Hands-on Exercise 2b: 2nd Order Spatial Point Patterns Analysis Methods

Published

August 10, 2024

Modified

September 2, 2024

1 Overview

This hands-on exercise is a continuation of Hands-on Exercise 2a.

2 The Packages

In this hands-on exercise, five R packages will be used, they are:

Package Description
sf To import, manage and process vector-based geospatial data in R
spatstat For point pattern analysis. In this hands-on exercise, it will be used to perform 1st- and 2nd-order spatial point patterns analysis and derive kernel density estimation (KDE) layer.
raster To read, write, manipulate, analyse and model of gridded spatial data (i.e. raster). In this hands-on exercise, it will be used to convert image output generate by spatstat into raster format.
maptools Provides a set of tools for manipulating geographic data. In this hands-on exercise, we mainly use it to convert Spatial objects into ppp format of spatstat.
tmap For thematic mapping; provides functions for plotting cartographic quality static point patterns maps or interactive maps by using leaflet API

Next, pacman loads the R packages that we require:

install.packages("maptools", repos = "https://packagemanager.posit.co/cran/2023-10-13")
pacman::p_load(sf, tmap, spatstat, maptools, raster)

3 The Data

The following public datasets are used:

Type Details Screenshot
Geospatial

Child Care Services Web

Point feature data providing both location and attribute information of childcare centres.

Source: data.gov.sg
Format: GEOJSON

Geospatial

Master Plan 2014 Subzone Boundary Web

Consists of the geographical boundary of Singapore at the planning subzone level. The data is based on URA Master Plan 2014.

Source: data.gov.sg
Format: SHP (ESRI Shapefile)

Geospatial

Coastal Outline

Polygon feature data showing the national boundary of Singapore.

Source: SLA
Format: SHP (ESRI Shapefile)

In this part, st_read() of sf package will be used to import these three geospatial data sets into R.

childcare_sf <- st_read("data/childcareservices.geojson") %>% 
  st_transform(crs = 3414)
Reading layer `ChildCareServices' from data source 
  `C:\kytjy\ISSS626-GAA\Hands-on_Ex\Hands-on_Ex02\data\ChildCareServices.geojson' 
  using driver `GeoJSON'
Simple feature collection with 1925 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84
sg_sf <- st_read(dsn = "data", layer="CostalOutline")
Reading layer `CostalOutline' from data source 
  `C:\kytjy\ISSS626-GAA\Hands-on_Ex\Hands-on_Ex02\data' using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
mpsz_sf <- st_read(dsn = "data", 
                layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\kytjy\ISSS626-GAA\Hands-on_Ex\Hands-on_Ex02\data' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

4 Spatial Data Wrangling

First, we inspect the crs of the data.

st_crs(childcare_sf)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

First, we inspect the crs of the data.

st_crs(sg_sf)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

The ID provided is EPSG:9001 which does not match the intended Projected CRS input of SVY21. Now, we correct the CRS ID using the code below.

sg_sf <- st_set_crs(sg_sf, 3414)

Now, let us check if the CRS ID has been set correctly:

st_crs(sg_sf)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

First, we inspect the crs of the data.

st_crs(mpsz_sf)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

The ID provided is EPSG:9001 which does not match the intended Projected CRS input of SVY21. Now, we correct the CRS ID using the code below.

mpsz_sf <- st_set_crs(mpsz_sf, 3414)

Now, let us check if the CRS ID has been set correctly:

st_crs(mpsz_sf)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

5. Geospatial Data Wrangling

5.1 Converting sf Dataframes to sp’s Spatial* Class

While simple feature data frame is gaining in popularity, many geospatial analysis packages still require the input geospatial data in sp’s Spatial* classes.

The code below uses as_Spatial() of sf package to convert the three geospatial data from simple feature data frame to sp’s Spatial* class.

childcare <- as_Spatial(childcare_sf)
mpsz <- as_Spatial(mpsz_sf)
sg <- as_Spatial(sg_sf)

Now, let’s view the information of the Spatial* classes below:

childcare
class       : SpatialPointsDataFrame 
features    : 1925 
extent      : 11810.03, 45404.24, 25596.33, 49300.88  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 2
names       :    Name,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Description 
min values  :   kml_1, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>100044</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>44, TELOK BLANGAH DRIVE, #01 - 19/51, SINGAPORE 100044</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td></td> </tr><tr bgcolor=""> <th>NAME</th> <td>PCF SPARKLETOTS PRESCHOOL @ TELOK BLANGAH BLK 44 (CC)</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>349C54F201805938</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093837</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center> 
max values  : kml_999,                                            <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>99982</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>35, ALLANBROOKE ROAD, SINGAPORE 099982</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td></td> </tr><tr bgcolor=""> <th>NAME</th> <td>ISLANDER PRE-SCHOOL PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>4F63ACF93EFABE7F</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20211201093837</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center> 
mpsz
class       : SpatialPolygonsDataFrame 
features    : 323 
extent      : 2667.538, 56396.44, 15748.72, 50256.33  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 15
names       : OBJECTID, SUBZONE_NO, SUBZONE_N, SUBZONE_C, CA_IND, PLN_AREA_N, PLN_AREA_C,       REGION_N, REGION_C,          INC_CRC, FMEL_UPD_D,     X_ADDR,     Y_ADDR,    SHAPE_Leng,    SHAPE_Area 
min values  :        1,          1, ADMIRALTY,    AMSZ01,      N, ANG MO KIO,         AM, CENTRAL REGION,       CR, 00F5E30B5C9B7AD8,      16409,  5092.8949,  19579.069, 871.554887798, 39437.9352703 
max values  :      323,         17,    YUNNAN,    YSSZ09,      Y,     YISHUN,         YS,    WEST REGION,       WR, FFCCF172717C2EAF,      16409, 50424.7923, 49552.7904, 68083.9364708,  69748298.792 
sg
class       : SpatialPolygonsDataFrame 
features    : 60 
extent      : 2663.926, 56047.79, 16357.98, 50244.03  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
variables   : 4
names       : GDO_GID, MSLINK, MAPID,              COSTAL_NAM 
min values  :       1,      1,     0,             ISLAND LINK 
max values  :      60,     67,     0, SINGAPORE - MAIN ISLAND 

Now, they have been correctly converted into sp’s Spatial* classes.

5.2 Converting the Spatial* class into generic sp format

spatstat requires the analytical data in ppp object form. There is no direct way to convert a Spatial* classes into ppp object. We need to convert the Spatial classes* into Spatial object first.

This converts the Spatial* classes into generic sp objects.

childcare_sp <- as(childcare, "SpatialPoints")
sg_sp <- as(sg, "SpatialPolygons")

This display sp objects properties:

childcare_sp
class       : SpatialPoints 
features    : 1925 
extent      : 11810.03, 45404.24, 25596.33, 49300.88  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 
sg_sp
class       : SpatialPolygons 
features    : 60 
extent      : 2663.926, 56047.79, 16357.98, 50244.03  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs 

5.1 Converting the Generic sp Format into spatstat’s ppp Format

We will use as.ppp() function of spatstat to convert the spatial data into spatstat’s ppp object format.

childcare_ppp <- as(childcare_sp, "ppp")
childcare_ppp
Planar point pattern: 1925 points
window: rectangle = [11810.03, 45404.24] x [25596.33, 49300.88] units

Let’s examine the difference by plotting chidlcare_ppp:

par(bg = '#E4D5C9')

plot(childcare_ppp)

We now look at the summary statistics of the newly created ppp object.

summary(childcare_ppp)
Planar point pattern:  1925 points
Average intensity 2.417323e-06 points per square unit

*Pattern contains duplicated points*

Coordinates are given to 11 decimal places

Window: rectangle = [11810.03, 45404.24] x [25596.33, 49300.88] units
                    (33590 x 23700 units)
Window area = 796335000 square units

5.2 Handling duplicated points

In order to check duplication in a ppp object:

any(duplicated(childcare_ppp))
[1] TRUE

multiplicity() function is used to count the number of co-indicence point.

multiplicity(childcare_ppp)
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
   1    2    1    1    1    1    2    1    1    1    1    1    1    3    1    1 
  17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32 
   1    3    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
  33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48 
   1    1    1    1    4    1    1    1    1    1    1    1    1    1    1    2 
  49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64 
   1    1    1    2    1    1    1    1    1    1    1    1    1    2    1    1 
  65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80 
   1    3    1    1    1    2    1   10    1    1    1    1    1    1    1    1 
  81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
  97   98   99  100  101  102  103  104  105  106  107  108  109  110  111  112 
   1    1    1    1    1    1    1    2    1    1    3    1    1    1    2    1 
 113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128 
   1    2    2    2    1    1    1    1    1    1    1    1    2    1    1    1 
 129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144 
   1    1    1    1    1    3    1    1    1    1    1    1    1    1    1    1 
 145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176 
   1    1    2    2    2    1    1    1    1    1    2    1    4    1    1    2 
 177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192 
   1    1    1    1    1    1    1    1    2    1    1    1    1    1    1    1 
 193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208 
   3    1    1    1    1    1    3    1    1    1    1    1    1    1    1    1 
 209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224 
   1    1    1    1    1   10    1    1    3    1    1    1    1    1    1    1 
 225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240 
   1    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1 
 241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256 
   1    1    2    6    1    2    1    1    2    1    1    1    1    1    1    1 
 257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272 
   3    2    3    2    1    2    1    1    2    4    1    6    6    1    1    1 
 273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288 
   2    1    1    1    1    2    1    1    1    1    1    1    3    1    1    1 
 289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304 
   1    1    4    1    2    1    1    1    1    1    1    1    1    1    1    1 
 305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320 
   1    1    1    1    1    1    1    1    1    1    1    2    1    1    1    1 
 321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352 
   1    1    2    1    1    1    2    1    1    1    2    1    1    1    1    1 
 353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368 
   1    1    1    1    2    1    2    2    1    1    1    1    2    1    1    1 
 369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384 
   4    1    1    1    1    2    1    1    1    1    1    1    2    1    1    1 
 385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    2 
 401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416 
   2    1    1    1    1    1    1    1    1    1    1    1    1    1    1    4 
 417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448 
   1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    1 
 449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464 
   1    1    2    1    1    1    1    1    1    1    1    1    2    1    1    1 
 465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480 
   1    1    2    1    1    1    1    1    1    1    1    1    1    1    1    1 
 481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496 
   2    2    1    1    1    1    1   10    1    2    1    1    1    2    1    3 
 497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512 
   1    1    1    1   10   10   10    1    1    1    1    1    1    1    1    1 
 513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528 
   1    1    1    2    1    2    1    1    1    1    3    1    2    1    1    1 
 529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544 
   1    1    1    1    1    1    3    1    1    1    1    1    2    1    1    2 
 545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560 
   1    1    3    1    1    1    1    1    1    1    1    2    2    2    1    1 
 561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576 
   2    3    1    1    1    2    1    1    1    2    2    1    1    1    1    1 
 577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592 
   1    1    1    1    1    1    1    1    1    1    1    1    1    4    1    1 
 593  594  595  596  597  598  599  600  601  602  603  604  605  606  607  608 
   1    1    1    1    1    3    1    1    1    1    1    1    1    1    1    1 
 609  610  611  612  613  614  615  616  617  618  619  620  621  622  623  624 
   1    1    1    1    1    4    1    1    1    1    1    1    4    1    1    1 
 625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640 
   1    1    1    1    1    2    1    1    1    1    1    1    1    1    1    1 
 641  642  643  644  645  646  647  648  649  650  651  652  653  654  655  656 
   1    1    1    1    2    1    1    1    1    1    1    1    1    2    1    1 
 657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672 
   1    1    1    1    1    1    1    1    1    1    2    1    1    3    1    1 
 673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688 
   1    1    1    1    1    1    1    1    1   10    1    1    1    1    1    2 
 689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720 
   1    1    1    2    1    2    1   10    1    4    1    2    1    1    1    1 
 721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736 
   3    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 737  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 753  754  755  756  757  758  759  760  761  762  763  764  765  766  767  768 
   1    3    1    1    3    1    1    1    1    2    1    1    1    1    1    1 
 769  770  771  772  773  774  775  776  777  778  779  780  781  782  783  784 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 785  786  787  788  789  790  791  792  793  794  795  796  797  798  799  800 
   1    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1 
 801  802  803  804  805  806  807  808  809  810  811  812  813  814  815  816 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 833  834  835  836  837  838  839  840  841  842  843  844  845  846  847  848 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 881  882  883  884  885  886  887  888  889  890  891  892  893  894  895  896 
   1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    2 
 897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912 
   1    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1 
 913  914  915  916  917  918  919  920  921  922  923  924  925  926  927  928 
   1    1    2    1    1    1    1    1    2    2    1    1    1    1    2    1 
 929  930  931  932  933  934  935  936  937  938  939  940  941  942  943  944 
   1    1    2    1    2    1    1    1    2    1    1    1    2    1    1    1 
 945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960 
   1    1    2    1    1    2    1    1    1    1    1    1    1    1    2    1 
 961  962  963  964  965  966  967  968  969  970  971  972  973  974  975  976 
   1    2    2    1    1    1    1    2    1    1    1    1    2    1    1    2 
 977  978  979  980  981  982  983  984  985  986  987  988  989  990  991  992 
   1    1    1    1    2    1    1    1    1    1    1    1    1    1    1    1 
 993  994  995  996  997  998  999 1000 1001 1002 1003 1004 1005 1006 1007 1008 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 
   1    1    1    2    4    1    1    1    1    1    1    2    1    2    2    2 
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 
   2    1    1    1    1    2    1    1    2    2    2    2    1    1    1    1 
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 
   2    1    1    1    2    1    2    1    1    1    1    1    1    1    1    1 
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 
   1    2    2    2    1    1    1    1    1    2    1    1    2    2    2    1 
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 
   1    1    1    1    2    1    1    2    1    1    1    1    1    1    1    1 
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 
   1    3    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 
   2    1    2    1    2    1    1    1    1    1    1    2    2    1    1    2 
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 
   1    2    1    2    1    2    1    1    1    1    1    2    1    1    1    1 
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 
   1    2    1    2    2    2    2    2    1    1    1    1    1    2    1    1 
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 
   1    1    1    1    1    2    1    1    2    1    1    1    1    2    1    1 
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 
   1    2    1    1    1    1    2    1    1    1    1    1    1    1    1    1 
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 
   1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    1 
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 
   1    1    1    2    1    1    1    3    1    1    1    1    1    1    1   10 
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 
   2    1    3    2    1    2    1    1    2    3    2    1    1    1    1    1 
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 
   1    1    1    1    1    2    1    2    1    1    1    1    1    1    1    1 
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 
   1    1    1    1    1    1    1    1    1    1    4    1    1    1    1    1 
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 
   2    1    1    1    2    1    2    1    1    1    1    1    1    1    1    1 
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 
  10    1    2    4    1    1    1    4    1    4    1    1    1    1    1    1 
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 
   1    1    1    1    1    1    1    1    1    4    2    3    2    1    1    1 
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 
   2    2    1    1    1    1    1    2    2    3    1    1    1    1    1    2 
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 
   2    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 
   1    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1 
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 
   2    2    2    1    1    1    6    1    1    1    1    1    1    1    1    1 
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 
   1    1    1    4    1    1    1    1    1    1    1    1    1    1    1    1 
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 
   1    1    1    1    2    2    1    1    1    1    1    1    1    1    1    1 
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 
   1    1    1    1    2    1    1    1    1    2    1    1    1    1    2    1 
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 
   2    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 
   2    1    1    1    1    1    1    3    1    1    1    1    1    1    1    1 
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 
   1    1    1    1    1    1    1    1    1    6    1    1    1    1    1    1 
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 
   1    1    1    1    1    1    1    3    1    1    4    1    1    2    1    1 
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 
   2    1    1    1    2    1    4    1    2    1    1    1    1    1    1    1 
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 
   1    1    1    1    1    1    1    1    2    1    1    2    1    1    1    1 
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 
   1    1    1    1    2    1    1    3    1    1    1    2    1    1    1    1 
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 
   2    1    1    1    1    1    1    2    1    1    2    1    1    1    1    1 
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 
   3    1    1    2    1    1    1    1    1    1    1    1    1    2    1    1 
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 
   1    1    1    1    1    1    1    2    1    1    1    1    1    1    1    1 
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 
   1    1    1    4    1    1    1    6    1    1    1    1    1    1    1    1 
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 
   1    1    1    2    1    1    1    2    1    1    1    1    1    2    1    1 
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 
   1    2    1    1    1    1    1    1    1    1    2    2    2    1    1    1 
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 
   2    1    2    1    2    1    2    1    1    2    1    2    2    2    2    1 
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 
   1    1    1    1    1    2    1    1    1    2    1    1    1    1    2    1 
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 
   1    4    1    4    1    4    1    1    2    1    1    1    1    1    3    1 
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 
   1    1    1    2    2    2    2    2    2    2    2    1    1    2    2    2 
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 
   1    2    1    1    1    1    1    2    2    2    1    2    2    2    2    1 
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 
   2    1    1    1    1    1    1    1    2    2    1    2    1    1    1    1 
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 
   1    1    1    1    2    1    2    2    2    2    2    2    1    1    2    1 
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 
   1    1    1    2    2    2    2    2    1    1    1    2    1    1    2    2 
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 
   1    2    1    1    2    1    1    2    2    2    1    2    1    2    1    1 
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 
   1    1    1    1    1    1    2    1    1    1    1    4    1    1    1    1 
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 
   3    1    1    2    1    1    1    2    1    1    1    1    1    2    2    1 
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 
   1    1    2    1    2    2    1    1    1    1    1    2    1    1    2    1 
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 
   1    3    2    2    2    1    2    1    3    1    1    1    1    1    1    1 
1921 1922 1923 1924 1925 
   1    1    1    1    3 

If we want to know how many locations have more than one point event:

sum(multiplicity(childcare_ppp) > 1)
[1] 338

To view the locations of these duplicate point events, we will plot childcare data:

tmap_mode('view')

tm_basemap("OpenStreetMap") +
tm_shape(childcare) +
  tm_dots(alpha=0.4, 
          size=0.05)
tmap_mode('plot')

The code chunk below implements the jittering approach.

childcare_ppp_jit <- rjitter(childcare_ppp, 
                             retry=TRUE, 
                             nsim=1, 
                             drop=TRUE)
any(duplicated(childcare_ppp_jit))
[1] FALSE

5.3 Creating owin object

When analysing spatial point patterns, it is a good practice to confine the analysis with a geographical area like Singapore boundary. In spatstat, an object called owin is specially designed to represent this polygonal region.

How to covert sg SpatialPolygon object into owin object of spatstat:

sg_owin <- as(sg_sp, "owin")

The output object can be displayed by using plot() function:

par(bg = '#E4D5C9')

plot(sg_owin)

And using summary() function of Base R:

summary(sg_owin)
Window: polygonal boundary
60 separate polygons (no holes)
            vertices        area relative.area
polygon 1         38 1.56140e+04      2.09e-05
polygon 2        735 4.69093e+06      6.27e-03
polygon 3         49 1.66986e+04      2.23e-05
polygon 4         76 3.12332e+05      4.17e-04
polygon 5       5141 6.36179e+08      8.50e-01
polygon 6         42 5.58317e+04      7.46e-05
polygon 7         67 1.31354e+06      1.75e-03
polygon 8         15 4.46420e+03      5.96e-06
polygon 9         14 5.46674e+03      7.30e-06
polygon 10        37 5.26194e+03      7.03e-06
polygon 11        53 3.44003e+04      4.59e-05
polygon 12        74 5.82234e+04      7.78e-05
polygon 13        69 5.63134e+04      7.52e-05
polygon 14       143 1.45139e+05      1.94e-04
polygon 15       165 3.38736e+05      4.52e-04
polygon 16       130 9.40465e+04      1.26e-04
polygon 17        19 1.80977e+03      2.42e-06
polygon 18        16 2.01046e+03      2.69e-06
polygon 19        93 4.30642e+05      5.75e-04
polygon 20        90 4.15092e+05      5.54e-04
polygon 21       721 1.92795e+06      2.57e-03
polygon 22       330 1.11896e+06      1.49e-03
polygon 23       115 9.28394e+05      1.24e-03
polygon 24        37 1.01705e+04      1.36e-05
polygon 25        25 1.66227e+04      2.22e-05
polygon 26        10 2.14507e+03      2.86e-06
polygon 27       190 2.02489e+05      2.70e-04
polygon 28       175 9.25904e+05      1.24e-03
polygon 29      1993 9.99217e+06      1.33e-02
polygon 30        38 2.42492e+04      3.24e-05
polygon 31        24 6.35239e+03      8.48e-06
polygon 32        53 6.35791e+05      8.49e-04
polygon 33        41 1.60161e+04      2.14e-05
polygon 34        22 2.54368e+03      3.40e-06
polygon 35        30 1.08382e+04      1.45e-05
polygon 36       327 2.16921e+06      2.90e-03
polygon 37       111 6.62927e+05      8.85e-04
polygon 38        90 1.15991e+05      1.55e-04
polygon 39        98 6.26829e+04      8.37e-05
polygon 40       415 3.25384e+06      4.35e-03
polygon 41       222 1.51142e+06      2.02e-03
polygon 42       107 6.33039e+05      8.45e-04
polygon 43         7 2.48299e+03      3.32e-06
polygon 44        17 3.28303e+04      4.38e-05
polygon 45        26 8.34758e+03      1.11e-05
polygon 46       177 4.67446e+05      6.24e-04
polygon 47        16 3.19460e+03      4.27e-06
polygon 48        15 4.87296e+03      6.51e-06
polygon 49        66 1.61841e+04      2.16e-05
polygon 50       149 5.63430e+06      7.53e-03
polygon 51       609 2.62570e+07      3.51e-02
polygon 52         8 7.82256e+03      1.04e-05
polygon 53       976 2.33447e+07      3.12e-02
polygon 54        55 8.25379e+04      1.10e-04
polygon 55       976 2.33447e+07      3.12e-02
polygon 56        61 3.33449e+05      4.45e-04
polygon 57         6 1.68410e+04      2.25e-05
polygon 58         4 9.45963e+03      1.26e-05
polygon 59        46 6.99702e+05      9.35e-04
polygon 60        13 7.00873e+04      9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414

5.4 Combining point events object and owin object

For the last step of geospatial data wrangling, we will extract childcare events that are located within Singapore by using the code chunk below.

childcareSG_ppp = childcare_ppp[sg_owin]

The output object combined both the point and polygon feature in one ppp object class as shown below.

summary(childcareSG_ppp)
Planar point pattern:  1925 points
Average intensity 2.570982e-06 points per square unit

*Pattern contains duplicated points*

Coordinates are given to 11 decimal places

Window: polygonal boundary
60 separate polygons (no holes)
            vertices        area relative.area
polygon 1         38 1.56140e+04      2.09e-05
polygon 2        735 4.69093e+06      6.27e-03
polygon 3         49 1.66986e+04      2.23e-05
polygon 4         76 3.12332e+05      4.17e-04
polygon 5       5141 6.36179e+08      8.50e-01
polygon 6         42 5.58317e+04      7.46e-05
polygon 7         67 1.31354e+06      1.75e-03
polygon 8         15 4.46420e+03      5.96e-06
polygon 9         14 5.46674e+03      7.30e-06
polygon 10        37 5.26194e+03      7.03e-06
polygon 11        53 3.44003e+04      4.59e-05
polygon 12        74 5.82234e+04      7.78e-05
polygon 13        69 5.63134e+04      7.52e-05
polygon 14       143 1.45139e+05      1.94e-04
polygon 15       165 3.38736e+05      4.52e-04
polygon 16       130 9.40465e+04      1.26e-04
polygon 17        19 1.80977e+03      2.42e-06
polygon 18        16 2.01046e+03      2.69e-06
polygon 19        93 4.30642e+05      5.75e-04
polygon 20        90 4.15092e+05      5.54e-04
polygon 21       721 1.92795e+06      2.57e-03
polygon 22       330 1.11896e+06      1.49e-03
polygon 23       115 9.28394e+05      1.24e-03
polygon 24        37 1.01705e+04      1.36e-05
polygon 25        25 1.66227e+04      2.22e-05
polygon 26        10 2.14507e+03      2.86e-06
polygon 27       190 2.02489e+05      2.70e-04
polygon 28       175 9.25904e+05      1.24e-03
polygon 29      1993 9.99217e+06      1.33e-02
polygon 30        38 2.42492e+04      3.24e-05
polygon 31        24 6.35239e+03      8.48e-06
polygon 32        53 6.35791e+05      8.49e-04
polygon 33        41 1.60161e+04      2.14e-05
polygon 34        22 2.54368e+03      3.40e-06
polygon 35        30 1.08382e+04      1.45e-05
polygon 36       327 2.16921e+06      2.90e-03
polygon 37       111 6.62927e+05      8.85e-04
polygon 38        90 1.15991e+05      1.55e-04
polygon 39        98 6.26829e+04      8.37e-05
polygon 40       415 3.25384e+06      4.35e-03
polygon 41       222 1.51142e+06      2.02e-03
polygon 42       107 6.33039e+05      8.45e-04
polygon 43         7 2.48299e+03      3.32e-06
polygon 44        17 3.28303e+04      4.38e-05
polygon 45        26 8.34758e+03      1.11e-05
polygon 46       177 4.67446e+05      6.24e-04
polygon 47        16 3.19460e+03      4.27e-06
polygon 48        15 4.87296e+03      6.51e-06
polygon 49        66 1.61841e+04      2.16e-05
polygon 50       149 5.63430e+06      7.53e-03
polygon 51       609 2.62570e+07      3.51e-02
polygon 52         8 7.82256e+03      1.04e-05
polygon 53       976 2.33447e+07      3.12e-02
polygon 54        55 8.25379e+04      1.10e-04
polygon 55       976 2.33447e+07      3.12e-02
polygon 56        61 3.33449e+05      4.45e-04
polygon 57         6 1.68410e+04      2.25e-05
polygon 58         4 9.45963e+03      1.26e-05
polygon 59        46 6.99702e+05      9.35e-04
polygon 60        13 7.00873e+04      9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
par(bg = '#E4D5C9')

plot(childcareSG_ppp)

5.4.1 Extracting Study Area

To extract the target planning areas:

pg = mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
tm = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
ck = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
jw = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",]

Plotting target planning areas:

par(bg = '#E4D5C9')

par(mfrow=c(2,2))
plot(pg, main = "Punggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")

5.4.2 Converting the spatial point data frame into generic sp format

Convert these SpatialPolygonsDataFrame layers into generic spatialpolygons layers:

pg_sp = as(pg, "SpatialPolygons")
tm_sp = as(tm, "SpatialPolygons")
ck_sp = as(ck, "SpatialPolygons")
jw_sp = as(jw, "SpatialPolygons")

5.4.3 Creating owin object (Similar as Hands-on_Ex03 part 1)

Convert these SpatialPolygons objects into owin objects that is required by spatstat:

pg_owin = as(pg_sp, "owin")
tm_owin = as(tm_sp, "owin")
ck_owin = as(ck_sp, "owin")
jw_owin = as(jw_sp, "owin")

5.4.4 Combining childcare points and the study area

To extract childcare that is within the specific region to do our analysis later on:

childcare_pg_ppp = childcare_ppp_jit[pg_owin]
childcare_tm_ppp = childcare_ppp_jit[tm_owin]
childcare_ck_ppp = childcare_ppp_jit[ck_owin]
childcare_jw_ppp = childcare_ppp_jit[jw_owin]

Next, rescale() function is used to trasnform the unit of measurement from metre to kilometre.

childcare_pg_ppp.km = rescale(childcare_pg_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_jw_ppp.km = rescale(childcare_jw_ppp, 1000, "km")

To plot these four study areas and the locations of the childcare centres.

par(bg = '#E4D5C9')

par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
plot(childcare_tm_ppp.km, main="Tampines")
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
plot(childcare_jw_ppp.km, main="Jurong West")

6 Second-Order Spatial Point Pattern Analysis

6.1 Analysing Spatial Point Process Using G-Function

The G function measures the distribution of the distances from an arbitrary event to its nearest event. In this section, we will learn how to compute G-function estimation by using Gest() of spatstat package. We will also learn how to perform monte carlo simulation test using envelope() of spatstat package.

Gest()

Gest(X, r=NULL, breaks=NULL, …, correction=c("rs", "km", "han"), domain=NULL)

X: The observed point pattern, from which an estimate of will be computed. An object of class ppp, or data in any format acceptable to as.ppp().

Correction: Optional. The edge correction(s) to be used to estimate. A vector of character strings selected from “none”, “rs”, “km”, “Hanisch” and “best”. Alternatively correction=“all” selects all options.

Computing G-function estimation

To compute G-function using Gest() of spatstat package:

par(bg = '#E4D5C9')

G_CK = Gest(childcare_ck_ppp, correction = "border")
plot(G_CK, xlim=c(0,500))

par(bg = '#E4D5C9')

G_CK_all = Gest(childcare_ck_ppp)
plot(G_CK_all, xlim=c(0,500))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Choa Chu Kang are randomly distributed.

\(H_1\)= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with G-function:

G_CK.csr <- envelope(childcare_ck_ppp, Gest, nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60..
.......70.........80.........90.........100.........110.........120.........130
.........140.........150.........160.........170.........180.........190........
.200.........210.........220.........230.........240.........250.........260......
...270.........280.........290.........300.........310.........320.........330....
.....340.........350.........360.........370.........380.........390.........400..
.......410.........420.........430.........440.........450.........460.........470
.........480.........490.........500.........510.........520.........530........
.540.........550.........560.........570.........580.........590.........600......
...610.........620.........630.........640.........650.........660.........670....
.....680.........690.........700.........710.........720.........730.........740..
.......750.........760.........770.........780.........790.........800.........810
.........820.........830.........840.........850.........860.........870........
.880.........890.........900.........910.........920.........930.........940......
...950.........960.........970.........980.........990........
999.

Done.
par(bg = '#E4D5C9')

plot(G_CK.csr)

Computing G-function estimation

par(bg = '#E4D5C9')

G_tm = Gest(childcare_tm_ppp, correction = "best")
plot(G_tm)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Tampines are randomly distributed.

\(H_1\) = The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

G_tm.csr <- envelope(childcare_tm_ppp, Gest, correction = "all", nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60..
.......70.........80.........90.........100.........110.........120.........130
.........140.........150.........160.........170.........180.........190........
.200.........210.........220.........230.........240.........250.........260......
...270.........280.........290.........300.........310.........320.........330....
.....340.........350.........360.........370.........380.........390.........400..
.......410.........420.........430.........440.........450.........460.........470
.........480.........490.........500.........510.........520.........530........
.540.........550.........560.........570.........580.........590.........600......
...610.........620.........630.........640.........650.........660.........670....
.....680.........690.........700.........710.........720.........730.........740..
.......750.........760.........770.........780.........790.........800.........810
.........820.........830.........840.........850.........860.........870........
.880.........890.........900.........910.........920.........930.........940......
...950.........960.........970.........980.........990........
999.

Done.
par(bg = '#E4D5C9')

plot(G_tm.csr)

6.2 Analysing Spatial Point Process Using F-Function

The F function estimates the empty space function F(r) or its hazard rate h(r) from a point pattern in a window of arbitrary shape. In this section, we will learn how to compute F-function estimation by using Fest() of spatstat package. We will also learn how to perform monte carlo simulation test using envelope() of spatstat package.

Computing F-function estimation

To compute F-function using Fest() of spatstat package:

par(bg = '#E4D5C9')

F_CK = Fest(childcare_ck_ppp)
plot(F_CK)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Choa Chu Kang are randomly distributed.

\(H_1\) = The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with F-function:

F_CK.csr <- envelope(childcare_ck_ppp, Fest, nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60..
.......70.........80.........90.........100.........110.........120.........130
.........140.........150.........160.........170.........180.........190........
.200.........210.........220.........230.........240.........250.........260......
...270.........280.........290.........300.........310.........320.........330....
.....340.........350.........360.........370.........380.........390.........400..
.......410.........420.........430.........440.........450.........460.........470
.........480.........490.........500.........510.........520.........530........
.540.........550.........560.........570.........580.........590.........600......
...610.........620.........630.........640.........650.........660.........670....
.....680.........690.........700.........710.........720.........730.........740..
.......750.........760.........770.........780.........790.........800.........810
.........820.........830.........840.........850.........860.........870........
.880.........890.........900.........910.........920.........930.........940......
...950.........960.........970.........980.........990........
999.

Done.
par(bg = '#E4D5C9')

plot(F_CK.csr)

Computing F-function estimation

Monte Carlo test with F-function:

par(bg = '#E4D5C9')

F_tm = Fest(childcare_tm_ppp, correction = "best")
plot(F_tm)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Tampines are randomly distributed.

\(H_1\) = The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

F_tm.csr <- envelope(childcare_tm_ppp, Fest, correction = "all", nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60..
.......70.........80.........90.........100.........110.........120.........130
.........140.........150.........160.........170.........180.........190........
.200.........210.........220.........230.........240.........250.........260......
...270.........280.........290.........300.........310.........320.........330....
.....340.........350.........360.........370.........380.........390.........400..
.......410.........420.........430.........440.........450.........460.........470
.........480.........490.........500.........510.........520.........530........
.540.........550.........560.........570.........580.........590.........600......
...610.........620.........630.........640.........650.........660.........670....
.....680.........690.........700.........710.........720.........730.........740..
.......750.........760.........770.........780.........790.........800.........810
.........820.........830.........840.........850.........860.........870........
.880.........890.........900.........910.........920.........930.........940......
...950.........960.........970.........980.........990........
999.

Done.
par(bg = '#E4D5C9')

plot(F_tm.csr)

6.3 Analysing Spatial Point Process Using K-Function

K-function measures the number of events found up to a given distance of any particular event. In this section, you will learn how to compute K-function estimates by using Kest() of spatstat package. We will also learn how to perform monte carlo simulation test using envelope() of spatstat package.

Computing K-function estimate

par(bg = '#E4D5C9')

K_ck = Kest(childcare_ck_ppp, correction = "Ripley")
plot(K_ck, . -r ~ r, ylab= "K(d)-r", xlab = "d(m)")

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Choa Chu Kang are randomly distributed.

\(H_1\) = The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

K_ck.csr <- envelope(childcare_ck_ppp, Kest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
99.

Done.
par(bg = '#E4D5C9')

plot(K_ck.csr, . - r ~ r, xlab="d", ylab="K(d)-r")

Computing K-function estimation

par(bg = '#E4D5C9')

K_tm = Kest(childcare_tm_ppp, correction = "Ripley")
plot(K_tm, . -r ~ r, 
     ylab= "K(d)-r", xlab = "d(m)", 
     xlim=c(0,1000))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Tampines are randomly distributed.

\(H_1\) = The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

K_tm.csr <- envelope(childcare_tm_ppp, Kest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
99.

Done.
par(bg = '#E4D5C9')

plot(K_tm.csr, . - r ~ r, 
     xlab="d", ylab="K(d)-r", xlim=c(0,500))

6.4 Analysing Spatial Point Process Using L-Function

In this section, you will learn how to compute L-function estimation by using Lest() of spatstat package. We will also learn how to perform monte carlo simulation test using envelope() of spatstat package.

Computing L-function estimation

par(bg = '#E4D5C9')

L_ck = Lest(childcare_ck_ppp, correction = "Ripley")
plot(L_ck, . -r ~ r, 
     ylab= "L(d)-r", xlab = "d(m)")

Performing Complete Spatial Randomness Test

\(H_0\) = The distribution of childcare services at Choa Chu Kang are randomly distributed.

\(H_1\) = The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value if smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

L_ck.csr <- envelope(childcare_ck_ppp, Lest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
99.

Done.
par(bg = '#E4D5C9')

plot(L_ck.csr, . - r ~ r, xlab="d", ylab="L(d)-r")

Computing L-function estimate

par(bg = '#E4D5C9')

L_tm = Lest(childcare_tm_ppp, correction = "Ripley")
plot(L_tm, . -r ~ r, 
     ylab= "L(d)-r", xlab = "d(m)", 
     xlim=c(0,1000))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

\(H_0\) = The distribution of childcare services at Tampines are randomly distributed.

\(H_1\) = The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below will be used to perform the hypothesis testing

L_tm.csr <- envelope(childcare_tm_ppp, Lest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
99.

Done.
par(bg = '#E4D5C9')

plot(L_tm.csr, . - r ~ r, 
     xlab="d", ylab="L(d)-r", xlim=c(0,500))

7 Reference

Kam, T. S. 2nd Order Spatial Point Patterns Analysis Methods. R for Geospatial Data Science and Analytics. https://r4gdsa.netlify.app/chap05.html