::p_load(sf, spdep,
pacman
tmap,
tidyverse,
DT, knitr, kableExtra)
# - Creates a package list containing the necessary R packages
# - Checks if the R packages in the package list have been installed
# - If not installed, will installed the missing packages & launch into R environment.
1 Overview
Local Measures of Spatial Autocorrelation (LMSA) focuses on the relationships between each observation and its surroundings, rather than providing a single summary of these relationships across the map. In this sense, they are not summary statistics but scores that allow us to learn more about the spatial structure in our data.
The general intuition behind the metrics however is similar to that of global ones. Some of them are even mathematically connected, where the global version can be decomposed into a collection of local ones.
An example is Local Indicators of Spatial Association (LISA). Beside LISA, Getis-Ord’s Gi-statistics will be introduce as an alternative LISA statistics that present complementary information or allow us to obtain similar insights for geographically referenced data.
This is an extension of Hands-on Exercise 5a, parts 1 to 4.2 follows the previous exercise.
The Analytical Question
In spatial policy, one of the main development objective of the local government and planners is to ensure equal distribution of development in the province. Our task in this study, hence, is to apply appropriate spatial statistical methods to discover if development are even distributed geographically. If the answer is No, then, our next question will be “is there sign of spatial clustering?” And, if the answer for this question is Yes, then our next question will be “where are these clusters?”
In this case study, we are interested to examine the spatial pattern of a selected development indicator (i.e. GDP per capita) of Hunan Provice, People Republic of China.
2 The Packages
Package | Description |
---|---|
spdep | To compute spatial weights, Global and Local Spatial Autocorrelation statistics (eg plot Moran scatterplot, compute and plot correlogram) |
sf | For importing, managing, and processing geospatial data |
tidyverse | A collection of functions for performing data science task such as importing, tidying, wrangling data and visualising data. |
tmap | To prepare cartographic quality choropleth map |
DT, knitr and kableExtra | For building tables |
3 The Data
Two data sets will be used in this hands-on exercise, they are:
Type | Name | Details |
---|---|---|
Geospatial | Hunan |
|
Aspatial | Hunan_2012 |
|
3.1 Loading the Data
In this section, you will learn how to bring a geospatial data and its associated attribute table into R environment. The geospatial data is in ESRI shapefile format and the attribute table is in csv fomat.
The code chunk below uses st_read()
of sf package to import Hunan shapefile into R.
#output: simple features object
<- st_read(dsn = "data/geospatial",
hunan layer = "Hunan")
Reading layer `Hunan' from data source
`C:\kytjy\ISSS626-GAA\Hands-on_Ex\Hands-on_Ex05\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
NAME_2 | ID_3 | NAME_3 | ENGTYPE_3 | Shape_Leng | Shape_Area | County | geometry |
---|---|---|---|---|---|---|---|
Changde | 21098 | Anxiang | County | 1.8690742 | 0.1005619 | Anxiang | POLYGON ((112.0625 29.75523... |
Changde | 21100 | Hanshou | County | 2.3606914 | 0.1997875 | Hanshou | POLYGON ((112.2288 29.11684... |
Changde | 21101 | Jinshi | County City | 1.4256199 | 0.0530241 | Jinshi | POLYGON ((111.8927 29.6013,... |
Changde | 21102 | Li | County | 3.4743245 | 0.1890812 | Li | POLYGON ((111.3731 29.94649... |
Changde | 21103 | Linli | County | 2.2895061 | 0.1145036 | Linli | POLYGON ((111.6324 29.76288... |
Changde | 21104 | Shimen | County | 4.1719181 | 0.3719471 | Shimen | POLYGON ((110.8825 30.11675... |
Changsha | 21109 | Liuyang | County City | 4.0605788 | 0.4601679 | Liuyang | POLYGON ((113.9905 28.5682,... |
Changsha | 21110 | Ningxiang | County | 3.3237542 | 0.2661420 | Ningxiang | POLYGON ((112.7181 28.38299... |
Changsha | 21111 | Wangcheng | County | 2.2920930 | 0.1304916 | Wangcheng | POLYGON ((112.7914 28.52688... |
Chenzhou | 21112 | Anren | County | 2.2407387 | 0.1334394 | Anren | POLYGON ((113.1757 26.82734... |
Chenzhou | 21115 | Guidong | County | 2.0467289 | 0.1285299 | Guidong | POLYGON ((114.1799 26.20117... |
Chenzhou | 21117 | Jiahe | County | 1.5038242 | 0.0631237 | Jiahe | POLYGON ((112.4425 25.74358... |
Chenzhou | 21118 | Linwu | County | 2.0512481 | 0.1244964 | Linwu | POLYGON ((112.5914 25.55143... |
Chenzhou | 21119 | Rucheng | County | 2.7155640 | 0.2176296 | Rucheng | POLYGON ((113.6759 25.87578... |
Chenzhou | 21120 | Yizhang | County | 3.2765386 | 0.1935418 | Yizhang | POLYGON ((113.2621 25.68394... |
Chenzhou | 21121 | Yongxing | County | 2.9211528 | 0.1767181 | Yongxing | POLYGON ((113.3169 26.41843... |
Chenzhou | 21122 | Zixing | County City | 2.6995368 | 0.2476280 | Zixing | POLYGON ((113.7311 26.16259... |
Hengyang | 21123 | Changning | County City | 2.4013569 | 0.1863642 | Changning | POLYGON ((112.6144 26.60198... |
Hengyang | 21124 | Hengdong | County | 2.7098301 | 0.1756985 | Hengdong | POLYGON ((113.1056 27.21007... |
Hengyang | 21125 | Hengnan | County | 3.7804926 | 0.2408050 | Hengnan | POLYGON ((112.7599 26.98149... |
Hengyang | 21126 | Hengshan | County | 2.3513543 | 0.0899128 | Hengshan | POLYGON ((112.607 27.4689, ... |
Hengyang | 21129 | Leiyang | County | 2.7427498 | 0.2426073 | Leiyang | POLYGON ((112.9996 26.69276... |
Hengyang | 21130 | Qidong | County | 3.0714217 | 0.1733332 | Qidong | POLYGON ((111.7818 27.0383,... |
Huaihua | 21131 | Chenxi | County | 3.0228314 | 0.1821929 | Chenxi | POLYGON ((110.2624 28.21778... |
Huaihua | 21134 | Zhongfang | County | 2.9023763 | 0.1994978 | Zhongfang | POLYGON ((109.9431 27.72858... |
Huaihua | 21135 | Huitong | County | 3.1096821 | 0.2053454 | Huitong | POLYGON ((109.9419 27.10512... |
Huaihua | 21136 | Jingzhou | County | 2.8584583 | 0.1988991 | Jingzhou | POLYGON ((109.8186 26.75842... |
Huaihua | 21137 | Mayang | Autonomous County | 2.3274351 | 0.1462606 | Mayang | POLYGON ((109.795 27.98008,... |
Huaihua | 21138 | Tongdao | Autonomous County | 2.5711292 | 0.2021613 | Tongdao | POLYGON ((109.9294 26.46561... |
Huaihua | 21139 | Xinhuang | Autonomous County | 2.1443973 | 0.1377764 | Xinhuang | POLYGON ((109.227 27.43733,... |
Huaihua | 21140 | Xupu | County | 4.0350213 | 0.3136471 | Xupu | POLYGON ((110.7189 28.30485... |
Huaihua | 21141 | Yuanling | County | 4.1642914 | 0.5345233 | Yuanling | POLYGON ((110.9652 28.99895... |
Huaihua | 21142 | Zhijiang | Autonomous County | 2.4452310 | 0.1906027 | Zhijiang | POLYGON ((109.8818 27.60661... |
Loudi | 21143 | Lengshuijiang | County City | 0.9753557 | 0.0372343 | Lengshuijiang | POLYGON ((111.5307 27.81472... |
Loudi | 21146 | Shuangfeng | County | 2.4012680 | 0.1565776 | Shuangfeng | POLYGON ((112.263 27.70421,... |
Loudi | 21147 | Xinhua | County | 3.3284533 | 0.3361624 | Xinhua | POLYGON ((111.3345 28.19642... |
Shaoyang | 21148 | Chengbu | Autonomous County | 2.9374722 | 0.2362023 | Chengbu | POLYGON ((110.4455 26.69317... |
Yongzhou | 21149 | Dongan | District | 3.2132100 | 0.1983914 | Dongan | POLYGON ((111.4531 26.86812... |
Shaoyang | 21150 | Dongkou | County | 2.9425568 | 0.1971258 | Dongkou | POLYGON ((110.6622 27.37305... |
Shaoyang | 21151 | Longhui | County | 2.7208650 | 0.2578820 | Longhui | POLYGON ((110.985 27.65983,... |
Shaoyang | 21152 | Shaodong | County | 2.3029031 | 0.1701016 | Shaodong | POLYGON ((111.9054 27.40254... |
Shaoyang | 21155 | Suining | County | 3.3043615 | 0.2659378 | Suining | POLYGON ((110.389 27.10006,... |
Shaoyang | 21156 | Wugang | County City | 2.2565865 | 0.1400498 | Wugang | POLYGON ((110.9878 27.03345... |
Shaoyang | 21157 | Xinning | County | 3.3414094 | 0.2487593 | Xinning | POLYGON ((111.0736 26.84627... |
Shaoyang | 21158 | Xinshao | County | 2.2955891 | 0.1658312 | Xinshao | POLYGON ((111.6013 27.58275... |
Xiangtan | 21159 | Shaoshan | County City | 0.7722034 | 0.0212792 | Shaoshan | POLYGON ((112.5391 27.97742... |
Xiangtan | 21162 | Xiangxiang | County City | 3.0755761 | 0.1840808 | Xiangxiang | POLYGON ((112.4549 28.05783... |
Xiangxi Tujia and Miao | 21163 | Baojing | County | 2.5569785 | 0.1606901 | Baojing | POLYGON ((109.7015 28.82844... |
Xiangxi Tujia and Miao | 21164 | Fenghuang | County | 2.2928893 | 0.1596618 | Fenghuang | POLYGON ((109.5239 28.19206... |
Xiangxi Tujia and Miao | 21165 | Guzhang | County | 1.7973808 | 0.1202073 | Guzhang | POLYGON ((109.8968 28.74034... |
Xiangxi Tujia and Miao | 21166 | Huayuan | County | 1.7921938 | 0.1025162 | Huayuan | POLYGON ((109.5647 28.61712... |
Xiangxi Tujia and Miao | 21167 | Jishou | County City | 1.8826069 | 0.0973363 | Jishou | POLYGON ((109.8375 28.4696,... |
Xiangxi Tujia and Miao | 21168 | Longshan | County | 2.9782522 | 0.2919091 | Longshan | POLYGON ((109.6337 29.62521... |
Xiangxi Tujia and Miao | 21169 | Luxi | County | 2.2051733 | 0.1434018 | Luxi | POLYGON ((110.1067 28.41835... |
Xiangxi Tujia and Miao | 21170 | Yongshun | County | 3.0959707 | 0.3551324 | Yongshun | POLYGON ((110.0003 29.29499... |
Yiyang | 21171 | Anhua | County | 4.5835050 | 0.4510648 | Anhua | POLYGON ((111.6034 28.63716... |
Yiyang | 21172 | Nan | County | 2.3011103 | 0.1247939 | Nan | POLYGON ((112.3232 29.46074... |
Yiyang | 21176 | Yuanjiang | County City | 2.3268236 | 0.1886048 | Yuanjiang | POLYGON ((112.4391 29.1791,... |
Yongzhou | 21178 | Jianghua | Autonomous County | 3.3360379 | 0.2927690 | Jianghua | POLYGON ((111.6461 25.29661... |
Yongzhou | 21180 | Lanshan | County | 2.3556792 | 0.1603531 | Lanshan | POLYGON ((112.2286 25.61123... |
Yongzhou | 21183 | Ningyuan | County | 3.3322291 | 0.2266737 | Ningyuan | POLYGON ((112.0715 26.09892... |
Yongzhou | 21185 | Shuangpai | County | 2.3877440 | 0.1540255 | Shuangpai | POLYGON ((111.8864 26.11957... |
Yongzhou | 21186 | Xintian | County | 1.7274574 | 0.0894019 | Xintian | POLYGON ((112.2578 26.0796,... |
Yueyang | 21187 | Huarong | County | 2.8178435 | 0.1678359 | Huarong | POLYGON ((112.9242 29.69134... |
Yueyang | 21188 | Linxiang | County City | 2.5975997 | 0.1568525 | Linxiang | POLYGON ((113.5502 29.67418... |
Yueyang | 21189 | Miluo | County City | 2.4474057 | 0.1497881 | Miluo | POLYGON ((112.9902 29.02139... |
Yueyang | 21190 | Pingjiang | County | 3.2177944 | 0.3786800 | Pingjiang | POLYGON ((113.8436 29.06152... |
Yueyang | 21191 | Xiangyin | County | 2.3515063 | 0.1491429 | Xiangyin | POLYGON ((112.9173 28.98264... |
Zhangjiajie | 21194 | Cili | County | 2.8940385 | 0.3232206 | Cili | POLYGON ((110.8822 29.69017... |
Zhuzhou | 21197 | Chaling | County | 2.2375615 | 0.2278921 | Chaling | POLYGON ((113.7666 27.10573... |
Zhuzhou | 21198 | Liling | County City | 2.2435440 | 0.1960655 | Liling | POLYGON ((113.5673 27.94346... |
Zhuzhou | 21199 | Yanling | County | 2.1078954 | 0.1849090 | Yanling | POLYGON ((113.9292 26.6154,... |
Zhuzhou | 21200 | You | County | 2.8904505 | 0.2436366 | You | POLYGON ((113.5879 27.41324... |
Zhuzhou | 21201 | Zhuzhou | District | 0.9331877 | 0.0373488 | Zhuzhou | POLYGON ((113.2493 28.02411... |
Zhangjiajie | 21196 | Sangzhi | County | 3.3475449 | 0.3216362 | Sangzhi | POLYGON ((110.556 29.40543,... |
Yueyang | 21192 | Yueyang | District | 2.5710437 | 0.1047594 | Yueyang | POLYGON ((113.343 29.61064,... |
Yongzhou | 21184 | Qiyang | County | 3.1835301 | 0.2275458 | Qiyang | POLYGON ((111.5563 26.81318... |
Yiyang | 21173 | Taojiang | County | 2.6080229 | 0.1905982 | Taojiang | POLYGON ((112.0508 28.67265... |
Shaoyang | 21153 | Shaoyang | County City | 0.9765399 | 0.0316779 | Shaoyang | POLYGON ((111.5013 27.30207... |
Loudi | 21144 | Lianyuan | County City | 2.8007253 | 0.2057341 | Lianyuan | POLYGON ((111.6789 28.02946... |
Huaihua | 21132 | Hongjiang | District | 3.3031522 | 0.1994795 | Hongjiang | POLYGON ((110.1441 27.47513... |
Hengyang | 21127 | Hengyang | County City | 0.9035944 | 0.0349171 | Hengyang | POLYGON ((112.7144 26.98613... |
Chenzhou | 21116 | Guiyang | County | 3.6939698 | 0.2668106 | Guiyang | POLYGON ((113.0811 26.04963... |
Changsha | 21107 | Changsha | District | 0.9536480 | 0.0320942 | Changsha | POLYGON ((112.9421 28.03722... |
Changde | 21105 | Taoyuan | County | 4.1225866 | 0.4126555 | Taoyuan | POLYGON ((112.0612 29.32855... |
Xiangtan | 21160 | Xiangtan | County City | 0.8480602 | 0.0253653 | Xiangtan | POLYGON ((113.0426 27.8942,... |
Yongzhou | 21177 | Dao | County | 2.7674949 | 0.2206642 | Dao | POLYGON ((111.498 25.81679,... |
Yongzhou | 21179 | Jiangyong | County | 2.2995970 | 0.1473782 | Jiangyong | POLYGON ((111.3659 25.39472... |
Next, we will import Hunan_2012.csv into R by using read_csv()
of readr package.
#output: R dataframe class
<- read_csv("data/aspatial/Hunan_2012.csv") hunan2012
County | City | avg_wage | deposite | FAI | Gov_Rev | Gov_Exp | GDP | GDPPC | GIO | Loan | NIPCR | Bed | Emp | EmpR | EmpRT | Pri_Stu | Sec_Stu | Household | Household_R | NOIP | Pop_R | RSCG | Pop_T | Agri | Service | Disp_Inc | RORP | ROREmp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhua | Yiyang | 30544 | 10967.0 | 6831.7 | 456.72 | 2703.00 | 13225.0 | 14567 | 9276.90 | 3954.90 | 3528.3 | 2718 | 494.310 | 441.4 | 338.0 | 54.175 | 32.830 | 290.400 | 234.5 | 101 | 670.3 | 5760.60 | 910.8 | 4942.253 | 5414.5 | 12373 | 0.7359464 | 0.8929619 |
Anren | Chenzhou | 28058 | 4598.9 | 6386.1 | 220.57 | 1454.70 | 4941.2 | 12761 | 4189.20 | 2555.30 | 3271.8 | 970 | 290.820 | 255.4 | 99.4 | 33.171 | 17.505 | 104.600 | 121.9 | 34 | 243.2 | 2386.40 | 388.7 | 2357.764 | 3814.1 | 16072 | 0.6256753 | 0.8782065 |
Anxiang | Changde | 31935 | 5517.2 | 3541.0 | 243.64 | 1779.50 | 12482.0 | 23667 | 5108.90 | 2806.90 | 7693.7 | 1931 | 336.390 | 270.5 | 205.9 | 19.584 | 17.819 | 148.100 | 135.4 | 53 | 346.0 | 3957.90 | 528.3 | 4524.410 | 14100.0 | 16610 | 0.6549309 | 0.8041262 |
Baojing | Hunan West | 30843 | 2250.0 | 1005.4 | 192.59 | 1379.10 | 4087.9 | 14563 | 3623.50 | 1253.70 | 4191.3 | 927 | 195.170 | 145.6 | 116.4 | 19.249 | 11.831 | 73.200 | 69.9 | 18 | 184.1 | 768.04 | 281.3 | 1118.561 | 541.8 | 13455 | 0.6544614 | 0.7460163 |
Chaling | Zhuzhou | 31251 | 8241.4 | 6508.4 | 620.19 | 1947.00 | 11585.0 | 20078 | 9157.70 | 4287.40 | 3887.7 | 1449 | 330.290 | 299.0 | 154.0 | 33.906 | 20.548 | 148.700 | 139.4 | 106 | 301.6 | 4009.50 | 578.4 | 3793.550 | 5444.0 | 20461 | 0.5214385 | 0.9052651 |
Changning | Hengyang | 28518 | 10860.0 | 7920.0 | 769.86 | 2631.60 | 19886.0 | 24418 | 37392.00 | 4242.80 | 9528.0 | 3605 | 548.610 | 415.1 | 273.7 | 81.831 | 44.485 | 211.200 | 211.7 | 115 | 448.2 | 5220.40 | 816.3 | 6430.782 | 13074.6 | 20868 | 0.5490628 | 0.7566395 |
Changsha | Changsha | 54540 | 24332.0 | 33624.0 | 5350.00 | 7885.50 | 88009.0 | 88656 | 51361.00 | 40534.00 | 17070.0 | 3310 | 670.820 | 452.0 | 219.4 | 59.151 | 39.685 | 300.300 | 248.4 | 214 | 475.1 | 22604.00 | 998.6 | 13107.148 | 17726.6 | 183252 | 0.4757661 | 0.6738022 |
Chengbu | Shaoyang | 28597 | 2580.6 | 1922.3 | 160.73 | 1191.60 | 2569.5 | 10132 | 1681.40 | 1232.00 | 3271.8 | 582 | 162.480 | 127.6 | 94.4 | 18.751 | 7.869 | 76.100 | 59.6 | 17 | 189.6 | 1173.80 | 256.7 | 1356.950 | 1215.1 | 12379 | 0.7386054 | 0.7853274 |
Chenxi | Huaihua | 33580 | 4990.0 | 5818.4 | 460.49 | 1724.20 | 7755.2 | 17026 | 6644.50 | 3220.00 | 4777.0 | 2170 | 308.430 | 214.4 | 174.8 | 26.706 | 14.591 | 139.500 | 110.5 | 55 | 311.7 | 2570.60 | 456.7 | 2257.520 | 1306.3 | 14595 | 0.6825049 | 0.6951334 |
Cili | Zhangjiajie | 33099 | 8116.9 | 4498.1 | 499.77 | 2306.20 | 11378.0 | 18714 | 5843.30 | 5503.40 | 5031.8 | 2179 | 381.200 | 334.8 | 264.3 | 34.918 | 27.020 | 211.400 | 174.5 | 70 | 379.4 | 3116.90 | 610.4 | 3112.731 | 5005.6 | 15603 | 0.6215596 | 0.8782791 |
Dao | Yongzhou | 32541 | 7245.0 | 7922.0 | 461.66 | 2013.50 | 11034.0 | 18059 | 2393.80 | 2873.50 | 9000.0 | 1588 | 381.530 | 344.3 | 178.3 | 65.790 | 31.430 | 158.700 | 157.9 | 44 | 388.2 | 2898.80 | 613.6 | 5602.035 | 8411.1 | 16305 | 0.6326597 | 0.9024192 |
Dongan | Yongzhou | 36713 | 6549.3 | 9158.0 | 434.07 | 1720.60 | 11495.0 | 20901 | 11597.00 | 3320.60 | 9116.7 | 1305 | 322.250 | 278.1 | 163.6 | 39.419 | 20.661 | 166.500 | 163.0 | 84 | 366.0 | 3106.30 | 551.2 | 4866.481 | 6784.4 | 20265 | 0.6640058 | 0.8629946 |
Dongkou | Shaoyang | 31483 | 9489.6 | 8703.2 | 374.96 | 2209.50 | 10286.0 | 13240 | 10568.00 | 4120.30 | 3792.5 | 1620 | 583.560 | 499.2 | 263.2 | 69.845 | 43.194 | 262.400 | 220.4 | 74 | 523.1 | 3229.10 | 780.9 | 6025.184 | 9116.8 | 15375 | 0.6698681 | 0.8554390 |
Fenghuang | Hunan West | 31608 | 4008.7 | 2550.0 | 406.51 | 1763.60 | 4681.2 | 13382 | 848.99 | 2863.00 | 4681.2 | 1212 | 250.730 | 195.4 | 151.8 | 33.379 | 17.690 | 90.100 | 80.5 | 17 | 255.5 | 2605.40 | 351.3 | 1206.261 | 651.1 | 14281 | 0.7272986 | 0.7793244 |
Guidong | Chenzhou | 30149 | 2200.1 | 2512.9 | 111.19 | 880.00 | 1955.9 | 8497 | 1202.60 | 1437.20 | 3130.4 | 567 | 138.530 | 115.2 | 56.9 | 13.437 | 7.091 | 64.800 | 65.4 | 14 | 150.1 | 486.10 | 231.8 | 630.016 | 911.1 | 12290 | 0.6475410 | 0.8315888 |
Guiyang | Chenzhou | 41394 | 9664.8 | 15712.0 | 1309.20 | 2727.50 | 23023.0 | 32853 | 36820.00 | 4860.10 | 10271.0 | 2237 | 517.180 | 430.9 | 242.0 | 69.344 | 33.568 | 231.800 | 217.5 | 127 | 420.4 | 6281.80 | 704.1 | 8804.639 | 14791.5 | 64517 | 0.5970743 | 0.8331722 |
Guzhang | Hunan West | 28610 | 1563.8 | 1021.7 | 108.40 | 959.60 | 1490.4 | 11580 | 513.95 | 849.56 | 3595.9 | 392 | 98.421 | 74.6 | 56.7 | 8.718 | 6.288 | 35.200 | 31.4 | 10 | 85.2 | 354.48 | 129.0 | 527.230 | 504.0 | 11954 | 0.6604651 | 0.7579683 |
Hanshou | Changde | 32265 | 7979.0 | 8665.0 | 386.13 | 2062.40 | 15788.0 | 20981 | 13491.00 | 4550.00 | 8269.9 | 2560 | 456.780 | 388.8 | 246.7 | 42.097 | 33.029 | 240.200 | 208.7 | 95 | 553.2 | 4460.50 | 804.6 | 6545.350 | 17727.0 | 18925 | 0.6875466 | 0.8511756 |
Hengdong | Hengyang | 30992 | 8661.0 | 6665.0 | 542.25 | 1937.40 | 17409.0 | 27485 | 17305.00 | 4118.00 | 10829.0 | 1859 | 388.340 | 284.5 | 201.0 | 48.983 | 36.120 | 164.400 | 167.4 | 96 | 426.4 | 5127.00 | 634.9 | 5972.961 | 11278.5 | 19800 | 0.6716018 | 0.7326054 |
Hengnan | Hengyang | 28031 | 3288.9 | 9531.4 | 804.91 | 2894.40 | 21019.0 | 21911 | 20953.00 | 4013.00 | 9872.9 | 2173 | 601.570 | 503.6 | 354.0 | 76.933 | 57.519 | 256.000 | 274.3 | 118 | 629.1 | 5752.60 | 961.4 | 8624.680 | 15914.0 | 18683 | 0.6543582 | 0.8371428 |
Hengshan | Hengyang | 28688 | 5944.6 | 4871.1 | 451.46 | 1393.70 | 9718.9 | 25172 | 8571.50 | 2221.50 | 10619.0 | 966 | 291.120 | 261.9 | 158.8 | 28.997 | 20.909 | 103.700 | 101.0 | 89 | 256.4 | 1713.70 | 387.0 | 3505.269 | 6233.5 | 17732 | 0.6625323 | 0.8996290 |
Hengyang | Hengyang | 27760 | 14680.0 | 11145.0 | 597.66 | 2778.80 | 21495.0 | 19382 | 18288.00 | 5549.60 | 10313.0 | 2632 | 686.520 | 500.2 | 313.6 | 88.917 | 64.674 | 299.200 | 247.7 | 120 | 733.4 | 5386.30 | 1111.6 | 12451.938 | 23139.2 | 124392 | 0.6597697 | 0.7286022 |
Hongjiang | Huaihua | 37686 | 5966.0 | 6515.5 | 623.95 | 2067.80 | 7355.5 | 17733 | 13750.00 | 3272.20 | 6553.5 | 1161 | 229.400 | 199.9 | 132.0 | 23.614 | 18.837 | 136.100 | 124.7 | 76 | 260.9 | 1744.20 | 415.8 | 2588.250 | 202.8 | 27334 | 0.6274651 | 0.8714037 |
Huarong | Yueyang | 26832 | 8116.4 | 14292.0 | 365.84 | 1933.90 | 21654.0 | 30413 | 40193.00 | 4564.80 | 10367.0 | 1500 | 442.970 | 359.2 | 252.9 | 31.601 | 26.933 | 202.300 | 170.2 | 151 | 430.3 | 6348.90 | 714.1 | 7690.520 | 10050.6 | 21501 | 0.6025767 | 0.8108901 |
Huayuan | Hunan West | 31708 | 3669.8 | 2200.0 | 331.78 | 1503.70 | 5905.9 | 20337 | 9257.60 | 2463.60 | 4353.8 | 1240 | 214.790 | 149.8 | 94.9 | 23.831 | 14.031 | 76.900 | 59.9 | 74 | 188.1 | 1024.70 | 291.1 | 883.722 | 533.2 | 15467 | 0.6461697 | 0.6974254 |
Huitong | Huaihua | 33693 | 4615.0 | 2617.4 | 295.00 | 1306.70 | 4588.3 | 14334 | 2095.60 | 1369.30 | 4631.9 | 1194 | 246.150 | 193.5 | 143.7 | 20.603 | 13.337 | 96.700 | 114.4 | 25 | 234.5 | 1061.70 | 320.9 | 1580.090 | 5.2 | 13989 | 0.7307572 | 0.7861060 |
Jiahe | Chenzhou | 36023 | 5493.1 | 4864.3 | 453.68 | 1331.50 | 9608.2 | 32091 | 14882.00 | 1906.50 | 7903.3 | 719 | 242.800 | 198.9 | 83.0 | 36.054 | 19.497 | 99.000 | 108.5 | 100 | 179.6 | 1365.90 | 301.3 | 2276.272 | 3230.2 | 17744 | 0.5960836 | 0.8191928 |
Jianghua | Yongzhou | 34378 | 4586.4 | 4631.5 | 309.70 | 1651.40 | 6555.9 | 15801 | 3357.10 | 2976.00 | 3225.3 | 1663 | 306.310 | 272.7 | 188.9 | 37.494 | 20.644 | 109.900 | 116.1 | 33 | 285.1 | 2384.80 | 416.7 | 3272.511 | 10533.8 | 16274 | 0.6841853 | 0.8902746 |
Jiangyong | Yongzhou | 30250 | 3198.2 | 3942.5 | 187.23 | 1009.10 | 4012.2 | 17168 | 2022.70 | 1201.20 | 3253.9 | 720 | 153.580 | 132.8 | 94.3 | 21.936 | 11.093 | 68.300 | 61.2 | 25 | 163.5 | 1238.20 | 234.3 | 2862.901 | 9773.3 | 16634 | 0.6978233 | 0.8646959 |
Jingzhou | Huaihua | 33870 | 3592.8 | 2031.4 | 237.51 | 1129.00 | 5007.7 | 20348 | 4534.10 | 1566.50 | 5397.3 | 1054 | 163.910 | 112.6 | 85.8 | 16.978 | 11.446 | 69.100 | 56.1 | 32 | 140.6 | 1611.50 | 246.7 | 1769.328 | 337.5 | 12859 | 0.5699230 | 0.6869624 |
Jinshi | Changde | 28692 | 4581.7 | 4777.0 | 373.31 | 1148.40 | 8706.9 | 34592 | 10935.00 | 2242.00 | 8169.9 | 848 | 122.780 | 82.1 | 61.7 | 8.723 | 7.592 | 81.900 | 43.7 | 77 | 92.4 | 3683.00 | 251.8 | 2562.460 | 7525.0 | 19498 | 0.3669579 | 0.6686757 |
Jishou | Hunan West | 39816 | 9586.2 | 5235.0 | 470.22 | 1738.20 | 9631.5 | 31537 | 6345.70 | 8282.90 | 4823.0 | 3790 | 213.420 | 97.0 | 62.4 | 25.454 | 21.941 | 99.200 | 46.5 | 49 | 85.2 | 5651.00 | 306.6 | 849.010 | 611.6 | 17980 | 0.2778865 | 0.4545029 |
Lanshan | Yongzhou | 33756 | 4236.0 | 3986.7 | 296.68 | 1194.60 | 6627.2 | 20088 | 5392.10 | 1599.40 | 8672.1 | 1144 | 233.390 | 201.5 | 131.6 | 32.448 | 16.299 | 83.300 | 90.7 | 52 | 198.2 | 2234.20 | 330.9 | 2262.021 | 10341.9 | 19161 | 0.5989725 | 0.8633618 |
Leiyang | Hengyang | 32814 | 15393.0 | 18687.0 | 1535.20 | 3819.00 | 30213.0 | 26105 | 42707.00 | 7409.20 | 10611.0 | 2531 | 750.120 | 553.7 | 405.8 | 112.200 | 56.350 | 338.100 | 281.2 | 155 | 629.3 | 7268.10 | 1160.2 | 8349.199 | 19981.6 | 19634 | 0.5424065 | 0.7381486 |
Lengshuijiang | Loudi | 35647 | 6805.3 | 9746.8 | 1054.20 | 2105.30 | 21243.0 | 64257 | 36926.00 | 8936.60 | 10441.0 | 1413 | 191.320 | 101.8 | 61.8 | 29.639 | 20.113 | 112.400 | 56.9 | 118 | 78.4 | 5750.60 | 332.6 | 1277.869 | 991.8 | 23120 | 0.2357186 | 0.5320928 |
Li | Changde | 32541 | 13487.0 | 16066.0 | 709.61 | 2459.50 | 20322.0 | 24473 | 18402.00 | 6748.00 | 8377.0 | 2038 | 513.440 | 426.8 | 227.1 | 38.975 | 33.938 | 268.500 | 256.0 | 96 | 539.7 | 7110.20 | 832.5 | 7562.340 | 53160.0 | 18985 | 0.6482883 | 0.8312558 |
Lianyuan | Loudi | 30320 | 8059.7 | 9255.3 | 707.45 | 3298.60 | 18340.0 | 18346 | 20515.00 | 7243.20 | 4307.7 | 2260 | 706.840 | 612.9 | 344.1 | 71.232 | 53.597 | 316.200 | 298.7 | 154 | 712.6 | 6889.00 | 1001.5 | 7642.158 | 5965.4 | 38131 | 0.7115327 | 0.8670986 |
Liling | Zhuzhou | 42896 | 12865.0 | 19125.0 | 2602.60 | 4221.40 | 39553.0 | 41491 | 57146.00 | 9398.10 | 13347.0 | 2797 | 639.830 | 513.1 | 212.1 | 53.992 | 33.705 | 248.400 | 229.7 | 482 | 473.2 | 11213.00 | 958.0 | 5373.990 | 17378.0 | 24185 | 0.4939457 | 0.8019318 |
Linli | Changde | 32667 | 564.1 | 7781.2 | 336.86 | 1538.70 | 10355.0 | 25554 | 8214.00 | 358.00 | 8143.1 | 1440 | 307.360 | 272.2 | 100.8 | 23.286 | 18.943 | 129.100 | 157.2 | 99 | 246.6 | 3604.90 | 409.3 | 3583.910 | 7031.0 | 18604 | 0.6024921 | 0.8856065 |
Linwu | Chenzhou | 32031 | 5984.0 | 5734.3 | 478.92 | 1435.20 | 8191.1 | 23986 | 6250.70 | 2152.70 | 7102.2 | 959 | 215.300 | 184.1 | 90.2 | 41.913 | 13.238 | 101.500 | 88.0 | 67 | 227.5 | 2023.30 | 342.8 | 1606.947 | 2632.2 | 17966 | 0.6636523 | 0.8550859 |
Linxiang | Yueyang | 31669 | 5850.5 | 10852.0 | 319.20 | 1609.00 | 15968.0 | 31897 | 29988.00 | 3788.20 | 9739.0 | 1289 | 293.500 | 212.5 | 98.8 | 36.202 | 23.831 | 138.600 | 136.7 | 123 | 286.1 | 4598.80 | 502.3 | 3357.477 | 2994.6 | 20628 | 0.5695799 | 0.7240204 |
Liuyang | Changsha | 40446 | 21415.0 | 43599.0 | 2473.10 | 4605.50 | 81113.0 | 63118 | 99254.00 | 23408.00 | 15719.0 | 6225 | 919.620 | 721.4 | 300.1 | 90.978 | 58.819 | 374.800 | 369.8 | 733 | 642.7 | 16233.00 | 1285.5 | 10844.470 | 26617.8 | 27345 | 0.4999611 | 0.7844544 |
Longhui | Shaoyang | 33615 | 11925.0 | 8723.9 | 425.06 | 2741.60 | 10511.0 | 9572 | 9317.90 | 3985.50 | 3177.6 | 2726 | 709.990 | 604.4 | 436.7 | 95.163 | 54.211 | 344.600 | 298.8 | 85 | 834.1 | 2819.60 | 1098.2 | 4320.396 | 3264.6 | 12049 | 0.7595156 | 0.8512796 |
Longshan | Hunan West | 34203 | 5557.0 | 2810.0 | 218.53 | 2052.40 | 4933.6 | 9754 | 893.45 | 2128.20 | 4164.0 | 1505 | 334.420 | 266.7 | 167.5 | 42.189 | 30.946 | 148.200 | 126.1 | 18 | 345.8 | 2293.90 | 508.3 | 2248.709 | 921.5 | 13138 | 0.6803069 | 0.7975001 |
Luxi | Hunan West | 32680 | 2946.8 | 1772.0 | 184.25 | 1337.60 | 4878.3 | 17472 | 7085.60 | 1626.60 | 4089.1 | 664 | 197.490 | 149.7 | 80.9 | 21.683 | 17.160 | 82.400 | 71.1 | 42 | 174.3 | 917.41 | 280.3 | 1036.088 | 540.8 | 13247 | 0.6218337 | 0.7580131 |
Mayang | Huaihua | 32772 | 3456.0 | 2703.1 | 215.86 | 1461.00 | 4738.8 | 13744 | 3876.90 | 2242.00 | 4299.8 | 975 | 216.850 | 160.0 | 148.1 | 24.173 | 15.207 | 90.300 | 87.8 | 33 | 245.0 | 1581.70 | 345.6 | 1865.938 | 5.2 | 14487 | 0.7089120 | 0.7378372 |
Miluo | Yueyang | 36113 | 4749.3 | 15828.0 | 1068.60 | 2446.50 | 29548.0 | 42497 | 66342.00 | 3330.60 | 9421.3 | 965 | 451.270 | 303.3 | 162.8 | 40.221 | 30.662 | 204.900 | 193.6 | 269 | 351.4 | 5817.70 | 697.0 | 5688.717 | 8978.5 | 23379 | 0.5041607 | 0.6721032 |
Nan | Yiyang | 35272 | 8921.7 | 3367.5 | 300.00 | 1987.10 | 15568.0 | 21311 | 11804.00 | 4928.10 | 8369.8 | 1877 | 366.100 | 325.6 | 226.1 | 35.487 | 29.444 | 259.200 | 201.3 | 91 | 455.9 | 5266.20 | 732.8 | 7783.359 | 6781.7 | 17691 | 0.6221343 | 0.8893745 |
Ningxiang | Changsha | 40744 | 18662.0 | 49234.0 | 2448.90 | 4812.20 | 73250.0 | 62202 | 114145.00 | 18435.00 | 13763.0 | 4351 | 852.960 | 757.6 | 318.3 | 80.715 | 68.853 | 391.700 | 369.6 | 552 | 655.5 | 15623.00 | 1186.5 | 12804.480 | 18447.7 | 24020 | 0.5524652 | 0.8882011 |
Ningyuan | Yongzhou | 34190 | 7351.4 | 7716.5 | 514.24 | 2234.40 | 8984.3 | 12697 | 5627.80 | 4249.40 | 4151.5 | 1753 | 444.920 | 401.3 | 157.8 | 68.336 | 32.471 | 185.500 | 157.8 | 64 | 460.9 | 3097.50 | 710.2 | 4283.431 | 9958.4 | 19742 | 0.6489721 | 0.9019599 |
Pingjiang | Yueyang | 30017 | 8718.4 | 10627.0 | 461.62 | 2827.00 | 16444.0 | 17252 | 25647.00 | 5201.20 | 3780.8 | 2205 | 601.380 | 512.8 | 278.3 | 73.943 | 43.548 | 260.900 | 269.9 | 136 | 612.5 | 3448.30 | 957.5 | 5060.948 | 8789.3 | 14883 | 0.6396867 | 0.8527054 |
Qidong | Hengyang | 30990 | 13633.0 | 6875.7 | 463.91 | 2413.20 | 17718.0 | 18001 | 26260.00 | 4246.10 | 9020.6 | 2055 | 607.640 | 529.2 | 311.0 | 80.694 | 51.474 | 289.200 | 287.3 | 115 | 627.8 | 6076.00 | 986.4 | 7380.180 | 15451.7 | 18256 | 0.6364558 | 0.8709104 |
Qiyang | Yongzhou | 32059 | 14432.0 | 14439.0 | 499.51 | 2710.50 | 17705.0 | 20638 | 11567.00 | 6388.30 | 8816.0 | 2799 | 594.100 | 495.2 | 257.9 | 75.936 | 45.318 | 241.900 | 255.1 | 107 | 519.9 | 3832.70 | 860.7 | 6273.597 | 13568.8 | 19776 | 0.6040432 | 0.8335297 |
Rucheng | Chenzhou | 35575 | 4777.6 | 3816.6 | 343.00 | 1492.70 | 3756.0 | 11286 | 4492.20 | 2426.20 | 2993.7 | 1130 | 232.280 | 197.3 | 127.8 | 33.101 | 14.478 | 111.300 | 101.6 | 43 | 235.7 | 751.80 | 333.2 | 2079.963 | 1744.7 | 13755 | 0.7073830 | 0.8494059 |
Sangzhi | Zhangjiajie | 33916 | 3920.0 | 3081.3 | 248.06 | 1856.10 | 5615.4 | 14624 | 1694.80 | 2981.20 | 3405.9 | 1999 | 267.150 | 234.5 | 139.8 | 31.278 | 18.993 | 127.900 | 122.8 | 28 | 256.9 | 1803.30 | 385.5 | 3607.897 | 17585.8 | 45167 | 0.6664073 | 0.8777840 |
Shaodong | Shaoyang | 31507 | 16184.0 | 12214.0 | 771.60 | 2757.00 | 22898.0 | 25246 | 29175.00 | 7855.30 | 10089.0 | 3080 | 724.310 | 547.7 | 310.0 | 99.082 | 59.009 | 363.200 | 297.8 | 148 | 524.9 | 8576.30 | 912.1 | 5704.602 | 4679.3 | 18296 | 0.5754851 | 0.7561679 |
Shaoshan | Xiangtan | 33314 | 2626.4 | 4500.0 | 258.64 | 683.65 | 4956.8 | 55570 | 9717.60 | 1649.00 | 14916.0 | 488 | 73.652 | 62.0 | 33.6 | 5.910 | 3.201 | 27.147 | 30.4 | 48 | 57.7 | 1200.80 | 92.3 | 807.714 | 1630.3 | 24991 | 0.6251354 | 0.8417966 |
Shaoyang | Shaoyang | 31783 | 8345.7 | 7237.3 | 376.42 | 2780.80 | 9031.2 | 9653 | 7887.80 | 2425.30 | 3499.3 | 2294 | 655.130 | 569.2 | 385.0 | 71.417 | 43.525 | 265.400 | 247.9 | 65 | 657.6 | 3406.30 | 942.3 | 5518.299 | 21656.5 | 65431 | 0.6978669 | 0.8688352 |
Shimen | Changde | 33261 | 8334.4 | 10531.0 | 548.33 | 2178.80 | 16293.0 | 27137 | 17795.00 | 6026.50 | 6156.0 | 2502 | 392.050 | 329.6 | 193.8 | 29.245 | 26.104 | 190.600 | 184.7 | 122 | 399.2 | 6490.70 | 600.5 | 5266.510 | 6981.0 | 19275 | 0.6647794 | 0.8407091 |
Shuangfeng | Loudi | 33684 | 11455.0 | 7904.9 | 470.59 | 2657.50 | 15225.0 | 17755 | 16665.00 | 3914.00 | 5470.3 | 1862 | 559.470 | 488.5 | 309.6 | 57.966 | 41.575 | 244.300 | 245.6 | 129 | 644.6 | 4596.00 | 859.4 | 7943.893 | 2613.1 | 14994 | 0.7500582 | 0.8731478 |
Shuangpai | Yongzhou | 33302 | 1918.0 | 3572.0 | 226.37 | 881.96 | 3728.0 | 21942 | 2646.30 | 2056.40 | 4568.1 | 408 | 86.264 | 68.0 | 46.2 | 11.339 | 6.890 | 57.600 | 39.5 | 34 | 111.6 | 567.21 | 174.1 | 1866.171 | 9092.1 | 18479 | 0.6410109 | 0.7882778 |
Suining | Shaoyang | 31750 | 4307.1 | 3605.6 | 222.40 | 1442.50 | 5658.1 | 16069 | 11150.00 | 1566.40 | 4990.4 | 802 | 264.080 | 208.9 | 145.2 | 26.200 | 14.261 | 108.800 | 86.3 | 54 | 268.4 | 1761.50 | 352.9 | 2064.499 | 1413.5 | 15004 | 0.7605554 | 0.7910482 |
Taojiang | Yiyang | 35184 | 8657.4 | 8743.0 | 417.37 | 2276.80 | 15162.0 | 19509 | 18691.00 | 4656.80 | 8687.9 | 2504 | 472.800 | 411.4 | 194.0 | 48.047 | 33.234 | 260.900 | 208.8 | 153 | 504.5 | 5355.90 | 779.7 | 13878.842 | 13439.3 | 79214 | 0.6470437 | 0.8701354 |
Taoyuan | Changde | 31877 | 11948.0 | 8656.0 | 710.08 | 2625.10 | 19603.0 | 22879 | 16529.00 | 4735.00 | 7682.6 | 2070 | 558.770 | 479.9 | 300.5 | 44.429 | 36.630 | 274.500 | 272.0 | 60 | 607.4 | 8926.00 | 857.1 | 18328.460 | 50619.0 | 60461 | 0.7086688 | 0.8588507 |
Tongdao | Huaihua | 35400 | 2578.0 | 1525.4 | 165.59 | 1046.50 | 2653.2 | 12781 | 2514.50 | 1021.00 | 3696.4 | 882 | 144.490 | 105.5 | 82.2 | 15.913 | 7.776 | 57.900 | 49.7 | 27 | 154.2 | 749.14 | 208.1 | 981.418 | 644.2 | 12424 | 0.7409899 | 0.7301543 |
Wangcheng | Changsha | 45171 | 12122.0 | 48829.0 | 2285.50 | 3802.30 | 37488.0 | 70666 | 148976.00 | 10330.00 | 16495.0 | 1678 | 361.480 | 268.6 | 131.2 | 28.838 | 24.815 | 161.300 | 154.8 | 314 | 266.6 | 5623.30 | 533.4 | 5222.356 | 6648.6 | 27690 | 0.4998125 | 0.7430563 |
Wugang | Shaoyang | 30573 | 8618.0 | 7373.3 | 486.85 | 2346.00 | 9046.7 | 12112 | 5346.00 | 3852.00 | 4864.4 | 2250 | 483.620 | 402.5 | 271.4 | 70.758 | 43.683 | 243.900 | 194.0 | 52 | 502.9 | 3476.00 | 752.3 | 4613.704 | 1734.7 | 15126 | 0.6684833 | 0.8322650 |
Xiangtan | Xiangtan | 35274 | 15516.0 | 10121.0 | 1236.60 | 3050.10 | 22728.0 | 27060 | 30730.00 | 12217.00 | 10135.0 | 2022 | 610.490 | 551.9 | 347.1 | 46.556 | 54.439 | 248.590 | 239.1 | 187 | 574.0 | 4889.10 | 845.2 | 10688.618 | 40758.0 | 69261 | 0.6791292 | 0.9040279 |
Xiangxiang | Xiangtan | 33040 | 13298.0 | 9819.0 | 975.59 | 2942.80 | 23175.0 | 29361 | 39630.00 | 7900.30 | 9264.3 | 2451 | 586.400 | 492.0 | 324.5 | 47.743 | 39.612 | 231.710 | 242.0 | 189 | 535.7 | 5891.80 | 787.8 | 6852.943 | 17531.9 | 22297 | 0.6799949 | 0.8390177 |
Xiangyin | Yueyang | 33169 | 5466.1 | 14714.0 | 520.53 | 2318.80 | 23265.0 | 33983 | 49507.00 | 5222.90 | 8824.5 | 1550 | 466.110 | 357.4 | 169.4 | 44.878 | 30.752 | 193.800 | 190.1 | 152 | 408.4 | 4273.20 | 686.9 | 6000.857 | 8175.0 | 19945 | 0.5945552 | 0.7667718 |
Xinhua | Loudi | 32496 | 11075.0 | 6725.3 | 576.47 | 3599.50 | 14940.0 | 13398 | 12152.00 | 6121.20 | 3342.4 | 1542 | 755.140 | 677.9 | 451.6 | 96.224 | 57.670 | 316.600 | 313.8 | 112 | 817.4 | 5743.50 | 1116.7 | 6919.849 | 3145.3 | 13834 | 0.7319782 | 0.8977143 |
Xinhuang | Huaihua | 31891 | 2373.1 | 2075.8 | 170.11 | 1069.30 | 3782.1 | 15412 | 3405.70 | 1265.20 | 3935.6 | 1350 | 149.710 | 105.6 | 104.0 | 15.938 | 8.781 | 72.000 | 72.5 | 36 | 178.6 | 873.45 | 246.0 | 1130.322 | 785.8 | 12732 | 0.7260163 | 0.7053637 |
Xinning | Shaoyang | 32067 | 6126.3 | 5978.8 | 390.67 | 1830.60 | 6064.6 | 10732 | 3857.70 | 2899.90 | 3287.7 | 1565 | 429.840 | 347.8 | 227.4 | 41.633 | 22.005 | 171.400 | 146.5 | 38 | 383.6 | 1445.90 | 566.7 | 2415.712 | 2364.9 | 13031 | 0.6769014 | 0.8091383 |
Xinshao | Shaoyang | 34199 | 7344.2 | 8313.8 | 384.19 | 2229.20 | 8590.9 | 11514 | 10829.00 | 5042.50 | 3986.4 | 2319 | 577.690 | 477.4 | 265.8 | 68.131 | 39.034 | 234.100 | 213.0 | 79 | 533.6 | 2941.60 | 749.0 | 3003.553 | 5679.2 | 13778 | 0.7124166 | 0.8263948 |
Xintian | Yongzhou | 33609 | 3851.6 | 3401.9 | 250.31 | 1280.20 | 4776.4 | 14426 | 3357.40 | 1334.90 | 2894.9 | 1264 | 236.520 | 217.1 | 116.9 | 32.138 | 15.970 | 93.800 | 107.1 | 42 | 226.6 | 1329.80 | 332.1 | 2530.482 | 3134.3 | 16925 | 0.6823246 | 0.9178928 |
Xupu | Huaihua | 29873 | 8675.5 | 6112.2 | 457.86 | 2452.00 | 10314.0 | 13863 | 6720.40 | 4588.00 | 5453.1 | 2106 | 512.610 | 400.9 | 292.3 | 53.793 | 29.166 | 226.100 | 211.2 | 71 | 516.0 | 3427.30 | 745.9 | 4308.431 | 242.6 | 16558 | 0.6917817 | 0.7820760 |
Yanling | Zhuzhou | 34156 | 3274.4 | 5835.0 | 402.90 | 1038.20 | 4250.5 | 21021 | 5855.80 | 2379.60 | 3608.4 | 545 | 116.180 | 99.0 | 54.0 | 10.838 | 6.682 | 52.200 | 46.0 | 75 | 112.2 | 1241.20 | 202.2 | 971.500 | 6851.0 | 18652 | 0.5548961 | 0.8521260 |
Yizhang | Chenzhou | 33508 | 7938.8 | 9992.5 | 750.40 | 2142.60 | 10455.0 | 17814 | 19120.00 | 3697.00 | 3788.6 | 2280 | 348.830 | 279.9 | 128.8 | 63.564 | 25.843 | 161.300 | 142.5 | 169 | 363.4 | 5037.50 | 588.9 | 2521.831 | 3584.6 | 19318 | 0.6170827 | 0.8023966 |
Yongshun | Hunan West | 31234 | 4516.9 | 2464.1 | 220.66 | 2021.70 | 4142.1 | 9590 | 1061.00 | 2839.90 | 3963.1 | 1801 | 312.990 | 259.4 | 195.7 | 38.686 | 24.854 | 115.700 | 113.9 | 23 | 292.5 | 2247.30 | 433.3 | 2018.756 | 845.8 | 12650 | 0.6750519 | 0.8287805 |
Yongxing | Chenzhou | 33278 | 7097.6 | 13456.0 | 1294.50 | 2476.00 | 21382.0 | 37651 | 43700.00 | 3053.70 | 9856.1 | 1969 | 375.500 | 304.9 | 133.5 | 52.440 | 19.765 | 172.500 | 145.7 | 175 | 333.5 | 4807.10 | 562.6 | 3174.984 | 4540.5 | 19960 | 0.5927835 | 0.8119840 |
You | Zhuzhou | 36791 | 9541.6 | 15611.0 | 1533.30 | 2803.00 | 25153.0 | 36264 | 32738.00 | 6316.20 | 13021.0 | 1992 | 472.320 | 418.0 | 254.3 | 42.124 | 31.908 | 186.400 | 196.9 | 248 | 344.4 | 7654.80 | 693.7 | 6071.620 | 27443.0 | 22732 | 0.4964682 | 0.8849932 |
Yuanjiang | Yiyang | 33302 | 7763.4 | 10486.0 | 509.45 | 2381.20 | 17603.0 | 26258 | 21082.00 | 6464.20 | 10060.0 | 1856 | 401.220 | 335.2 | 203.3 | 34.220 | 27.932 | 260.300 | 161.0 | 105 | 366.7 | 5125.10 | 672.5 | 6644.520 | 5899.6 | 20552 | 0.5452788 | 0.8354519 |
Yuanling | Huaihua | 37762 | 5627.0 | 5466.8 | 677.40 | 2202.60 | 14156.0 | 24194 | 14835.00 | 2485.30 | 4265.4 | 2501 | 382.530 | 283.9 | 210.2 | 33.935 | 21.278 | 166.500 | 155.9 | 56 | 397.0 | 3092.50 | 586.5 | 2508.387 | 637.8 | 15165 | 0.6768968 | 0.7421640 |
Yueyang | Yueyang | 31470 | 4946.6 | 15084.0 | 330.43 | 1971.60 | 18974.0 | 26360 | 36800.00 | 3668.70 | 10377.0 | 1616 | 411.260 | 293.3 | 173.0 | 40.218 | 30.051 | 201.500 | 150.9 | 158 | 435.3 | 5836.60 | 721.7 | 11279.478 | 15381.2 | 88494 | 0.6031592 | 0.7131741 |
Zhijiang | Huaihua | 33582 | 4306.1 | 2802.2 | 356.96 | 1470.00 | 6992.5 | 20518 | 4491.80 | 2477.30 | 4535.1 | 935 | 223.750 | 175.5 | 116.1 | 23.693 | 14.726 | 101.800 | 94.3 | 56 | 247.6 | 2133.30 | 341.6 | 2576.470 | 90.8 | 13589 | 0.7248244 | 0.7843575 |
Zhongfang | Huaihua | 34941 | 1296.3 | 7594.6 | 348.83 | 1048.00 | 7332.1 | 30846 | 8608.50 | 968.44 | 6082.5 | 662 | 170.250 | 103.1 | 89.3 | 12.709 | 8.563 | 71.100 | 70.9 | 56 | 173.8 | 1064.90 | 238.3 | 2917.158 | 1938.6 | 37231 | 0.7293328 | 0.6055800 |
Zhuzhou | Zhuzhou | 37191 | 5395.6 | 4777.7 | 507.04 | 1408.80 | 7962.1 | 27589 | 6768.90 | 2970.20 | 11407.0 | 1032 | 210.380 | 177.0 | 106.0 | 12.436 | 11.824 | 92.200 | 85.2 | 82 | 210.6 | 2538.40 | 289.6 | 4236.370 | 10883.0 | 103228 | 0.7272099 | 0.8413347 |
Zixing | Chenzhou | 34163 | 7873.2 | 14891.0 | 1556.00 | 2679.00 | 22261.0 | 65706 | 51921.00 | 5014.70 | 10838.0 | 1159 | 261.980 | 177.9 | 76.0 | 22.316 | 14.760 | 114.000 | 86.3 | 155 | 140.2 | 4835.80 | 340.2 | 2761.164 | 3636.3 | 21600 | 0.4121105 | 0.6790595 |
The code chunk below will be used to update the attribute table of hunan’s SpatialPolygonsDataFrame with the attribute fields of hunan2012 dataframe. This is performed by using left_join()
of dplyr package.
colnames(hunan)
[1] "NAME_2" "ID_3" "NAME_3" "ENGTYPE_3" "Shape_Leng"
[6] "Shape_Area" "County" "geometry"
colnames(hunan2012)
[1] "County" "City" "avg_wage" "deposite" "FAI"
[6] "Gov_Rev" "Gov_Exp" "GDP" "GDPPC" "GIO"
[11] "Loan" "NIPCR" "Bed" "Emp" "EmpR"
[16] "EmpRT" "Pri_Stu" "Sec_Stu" "Household" "Household_R"
[21] "NOIP" "Pop_R" "RSCG" "Pop_T" "Agri"
[26] "Service" "Disp_Inc" "RORP" "ROREmp"
<- left_join(hunan,hunan2012) %>%
hunan select(1:4, 7, 15)
3.2 Visualising Regional Development Indicator
Now, we are going to prepare a basemap and a choropleth map showing the distribution of GDPPC 2012 by using qtm() of tmap package.
Show the code
<- tm_shape(hunan) +
basemap tm_polygons() +
tm_text("NAME_3",
size=0.3) +
tm_layout(bg.color = "#E4D5C9",
frame = F)
<- qtm(hunan, "GDPPC") +
gdppc tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 0.9,
legend.text.size = 0.5)
tmap_arrange(basemap, gdppc, asp=1, ncol=2)
4 Local Indicatros of Spatial Association
Local Indicators of Spatial Association (LISA): statistics that evaluate the existence of clusters in the spatial arrangement of a given variable.
Eg if we are studying cancer rates among census tracts in a given city local clusters in the rates mean that there are areas that have higher or lower rates than is to be expected by chance alone; that is, the values occurring are above or below those of a random distribution in space.
In this section, we learn how to apply appropriate Local Indicators for Spatial Association (LISA), especially local Moran’s I to detect cluster and/or outlier from GDP per capita 2012 of Hunan Province, PRC.
4.1 Computing Contiguity Spatial Weights
Before we can compute the global spatial autocorrelation statistics, we need to construct a spatial weights of the study area. The spatial weights is used to define the neighbourhood relationships between the geographical units (i.e. county) in the study area.
poly2nb()
of spdep package to compute contiguity weight matrices for the study area.- This function builds a neighbours list based on regions with contiguous boundaries. If you look at the documentation you will see that you can pass a “queen” argument that takes TRUE or FALSE as options.
- Default: Queen = TRUE, but if you change it to FALSE, you are using ROOK method.
- The output that you will get is a list.
The code chunk below will be used to compute Queen contiguity weight matrix:
<- poly2nb(hunan,
wm_q queen=TRUE)
summary(wm_q)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Link number distribution:
1 2 3 4 5 6 7 8 9 11
2 2 12 16 24 14 11 4 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links
Interpretation
- There are 88 area units in Hunan.
- Most connected area unit has 11 neighbours.
- There are 2 area units with only 1 neighbour.
4.2 Row-standardised weights matrix
Assign weights to each neighboring polygon. In our case, each neighboring polygon will be assigned equal weight (style=“W”).
This is accomplished by assigning the fraction 1/(# of neighbors) to each neighboring county then summing the weighted income values.
While this is the most intuitive way to summaries the neighbors’ values it has one drawback in that polygons along the edges of the study area will base their lagged values on fewer polygons thus potentially over- or under-estimating the true nature of the spatial autocorrelation in the data.
Style=“W” option used for this example for simplicity’s sake but more robust options are available, notably style=“B”.
- Styles:
- W: row standardised (sums over all links to n)
- B: basic binary coding
- C: globally standardised (sums over all links to n)
- U: equal to C divided by the number of neighbours (sums over all links to unity)
- S: variance-stabilizing coding scheme (sums over all links to n)
- minmax: divides the weights by min of the max row sums and max column sums of the input weights; similar to C/U
- Styles:
The input of
*nb2listw()
must be an object of class nb. The syntax of the function has two major arguments, namely style and zero.poly.
<- nb2listw(wm_q,
rswm_q style="W",
zero.policy = TRUE)
rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 37.86334 365.9147
zero.policy = TRUE allows for lists of non-neighbors. This should be used with caution since the user may not be aware of missing neighbors in their dataset however, a zero.policy = FALSE would return an error.
If zero policy = TRUE, weights vectors of zero length are inserted for regions without neighbour in the neighbours list. These will in turn generate lag values of zero, equivalent to the sum of products of the zero row t(rep(0, length = length(neighbours))) %*% x, for arbitrary numerical vector x of length length(neighbours). The spatially lagged value of x for the zero-neighbour region will then be zero, which may (or may not) be a sensible choice.
4.3 Computing Local Moran’s I
localmoran()
function of spdep computes \(I_i\) values, given a set of \(z_i\) values and a listw object providing neighbour weighting information for the polygon associated with the zi values
The code chunks below are used to compute local Moran’s I of GDPPC2012 at the county level.
<- order(hunan$County)
fips <- localmoran(hunan$GDPPC, rswm_q)
localMI
head(localMI,10) %>%
kable() %>%
::kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"),
kableExtrafixed_thead = T)
Ii | E.Ii | Var.Ii | Z.Ii | Pr(z != E(Ii)) |
---|---|---|---|---|
-0.0014685 | -0.0000282 | 0.0004724 | -0.0662690 | 0.9471636 |
0.0258782 | -0.0006062 | 0.0101666 | 0.2626643 | 0.7928094 |
-0.0119876 | -0.0053666 | 0.1133362 | -0.0196670 | 0.9843090 |
0.0010225 | -0.0000002 | 0.0000051 | 0.4525980 | 0.6508382 |
0.0148149 | -0.0000683 | 0.0014499 | 0.3908581 | 0.6959021 |
-0.0387938 | -0.0003860 | 0.0064756 | -0.4772884 | 0.6331568 |
3.3688217 | -0.0775018 | 1.5180283 | 2.7971523 | 0.0051555 |
1.5606896 | -0.0738777 | 0.8001247 | 1.8273593 | 0.0676458 |
4.4219586 | -0.1106694 | 1.3595930 | 3.8872782 | 0.0001014 |
-0.3993226 | -0.0070111 | 0.0703477 | -1.4791294 | 0.1391057 |
- Ii: the local Moran’s I statistics
- E.Ii: the expectation of local moran statistic under the randomisation hypothesis
- Var.Ii: the variance of local moran statistic under the randomisation hypothesis
- Z.Ii:the standard deviate of local moran statistic
- Pr(): the p-value of local moran statistic
The code chunk below list the content of the local Moran matrix derived by using printCoefmat()
.
printCoefmat(data.frame(
localMI[fips,], row.names=hunan$County[fips]),
check.names=FALSE)
Ii E.Ii Var.Ii Z.Ii Pr.z....E.Ii..
Anhua -2.2493e-02 -5.0048e-03 5.8235e-02 -7.2467e-02 0.9422
Anren -3.9932e-01 -7.0111e-03 7.0348e-02 -1.4791e+00 0.1391
Anxiang -1.4685e-03 -2.8150e-05 4.7238e-04 -6.6269e-02 0.9472
Baojing 3.4737e-01 -5.0089e-03 8.3636e-02 1.2185e+00 0.2230
Chaling 2.0559e-02 -9.6812e-04 2.7711e-02 1.2932e-01 0.8971
Changning -2.9868e-05 -9.0010e-09 1.5105e-07 -7.6828e-02 0.9388
Changsha 4.9022e+00 -2.1348e-01 2.3194e+00 3.3590e+00 0.0008
Chengbu 7.3725e-01 -1.0534e-02 2.2132e-01 1.5895e+00 0.1119
Chenxi 1.4544e-01 -2.8156e-03 4.7116e-02 6.8299e-01 0.4946
Cili 7.3176e-02 -1.6747e-03 4.7902e-02 3.4200e-01 0.7324
Dao 2.1420e-01 -2.0824e-03 4.4123e-02 1.0297e+00 0.3032
Dongan 1.5210e-01 -6.3485e-04 1.3471e-02 1.3159e+00 0.1882
Dongkou 5.2918e-01 -6.4461e-03 1.0748e-01 1.6338e+00 0.1023
Fenghuang 1.8013e-01 -6.2832e-03 1.3257e-01 5.1198e-01 0.6087
Guidong -5.9160e-01 -1.3086e-02 3.7003e-01 -9.5104e-01 0.3416
Guiyang 1.8240e-01 -3.6908e-03 3.2610e-02 1.0305e+00 0.3028
Guzhang 2.8466e-01 -8.5054e-03 1.4152e-01 7.7931e-01 0.4358
Hanshou 2.5878e-02 -6.0620e-04 1.0167e-02 2.6266e-01 0.7928
Hengdong 9.9964e-03 -4.9063e-04 6.7742e-03 1.2742e-01 0.8986
Hengnan 2.8064e-02 -3.2160e-04 3.7597e-03 4.6294e-01 0.6434
Hengshan -5.8201e-03 -3.0437e-05 5.1076e-04 -2.5618e-01 0.7978
Hengyang 6.2997e-02 -1.3046e-03 2.1865e-02 4.3486e-01 0.6637
Hongjiang 1.8790e-01 -2.3019e-03 3.1725e-02 1.0678e+00 0.2856
Huarong -1.5389e-02 -1.8667e-03 8.1030e-02 -4.7503e-02 0.9621
Huayuan 8.3772e-02 -8.5569e-04 2.4495e-02 5.4072e-01 0.5887
Huitong 2.5997e-01 -5.2447e-03 1.1077e-01 7.9685e-01 0.4255
Jiahe -1.2431e-01 -3.0550e-03 5.1111e-02 -5.3633e-01 0.5917
Jianghua 2.8651e-01 -3.8280e-03 8.0968e-02 1.0204e+00 0.3076
Jiangyong 2.4337e-01 -2.7082e-03 1.1746e-01 7.1800e-01 0.4728
Jingzhou 1.8270e-01 -8.5106e-04 2.4363e-02 1.1759e+00 0.2396
Jinshi -1.1988e-02 -5.3666e-03 1.1334e-01 -1.9667e-02 0.9843
Jishou -2.8680e-01 -2.6305e-03 4.4028e-02 -1.3543e+00 0.1756
Lanshan 6.3334e-02 -9.6365e-04 2.0441e-02 4.4972e-01 0.6529
Leiyang 1.1581e-02 -1.4948e-04 2.5082e-03 2.3422e-01 0.8148
Lengshuijiang -1.7903e+00 -8.2129e-02 2.1598e+00 -1.1623e+00 0.2451
Li 1.0225e-03 -2.4048e-07 5.1060e-06 4.5260e-01 0.6508
Lianyuan -1.4672e-01 -1.8983e-03 1.9145e-02 -1.0467e+00 0.2952
Liling 1.3774e+00 -1.5097e-02 4.2601e-01 2.1335e+00 0.0329
Linli 1.4815e-02 -6.8294e-05 1.4499e-03 3.9086e-01 0.6959
Linwu -2.4621e-03 -9.0703e-06 1.9258e-04 -1.7676e-01 0.8597
Linxiang 6.5904e-02 -2.9028e-03 2.5470e-01 1.3634e-01 0.8916
Liuyang 3.3688e+00 -7.7502e-02 1.5180e+00 2.7972e+00 0.0052
Longhui 8.0801e-01 -1.1377e-02 1.5538e-01 2.0787e+00 0.0376
Longshan 7.5663e-01 -1.1100e-02 3.1449e-01 1.3690e+00 0.1710
Luxi 1.8177e-01 -2.4855e-03 3.4249e-02 9.9561e-01 0.3194
Mayang 2.1852e-01 -5.8773e-03 9.8049e-02 7.1663e-01 0.4736
Miluo 1.8704e+00 -1.6927e-02 2.7925e-01 3.5715e+00 0.0004
Nan -9.5789e-03 -4.9497e-04 6.8341e-03 -1.0988e-01 0.9125
Ningxiang 1.5607e+00 -7.3878e-02 8.0012e-01 1.8274e+00 0.0676
Ningyuan 2.0910e-01 -7.0884e-03 8.2306e-02 7.5356e-01 0.4511
Pingjiang -9.8964e-01 -2.6457e-03 5.6027e-02 -4.1698e+00 0.0000
Qidong 1.1806e-01 -2.1207e-03 2.4747e-02 7.6396e-01 0.4449
Qiyang 6.1966e-02 -7.3374e-04 8.5743e-03 6.7712e-01 0.4983
Rucheng -3.6992e-01 -8.8999e-03 2.5272e-01 -7.1814e-01 0.4727
Sangzhi 2.5053e-01 -4.9470e-03 6.8000e-02 9.7972e-01 0.3272
Shaodong -3.2659e-02 -3.6592e-05 5.0546e-04 -1.4510e+00 0.1468
Shaoshan 2.1223e+00 -5.0227e-02 1.3668e+00 1.8583e+00 0.0631
Shaoyang 5.9499e-01 -1.1253e-02 1.3012e-01 1.6807e+00 0.0928
Shimen -3.8794e-02 -3.8603e-04 6.4756e-03 -4.7729e-01 0.6332
Shuangfeng 9.2835e-03 -2.2867e-03 3.1516e-02 6.5174e-02 0.9480
Shuangpai 8.0591e-02 -3.1366e-04 8.9838e-03 8.5358e-01 0.3933
Suining 3.7585e-01 -3.5933e-03 4.1870e-02 1.8544e+00 0.0637
Taojiang -2.5394e-01 -1.2395e-03 1.4477e-02 -2.1002e+00 0.0357
Taoyuan 1.4729e-02 -1.2039e-04 8.5103e-04 5.0903e-01 0.6107
Tongdao 4.6482e-01 -6.9870e-03 1.9879e-01 1.0582e+00 0.2900
Wangcheng 4.4220e+00 -1.1067e-01 1.3596e+00 3.8873e+00 0.0001
Wugang 7.1003e-01 -7.8144e-03 1.0710e-01 2.1935e+00 0.0283
Xiangtan 2.4530e-01 -3.6457e-04 3.2319e-03 4.3213e+00 0.0000
Xiangxiang 2.6271e-01 -1.2703e-03 2.1290e-02 1.8092e+00 0.0704
Xiangyin 5.4525e-01 -4.7442e-03 7.9236e-02 1.9539e+00 0.0507
Xinhua 1.1810e-01 -6.2649e-03 8.6001e-02 4.2409e-01 0.6715
Xinhuang 1.5725e-01 -4.1820e-03 3.6648e-01 2.6667e-01 0.7897
Xinning 6.8928e-01 -9.6674e-03 2.0328e-01 1.5502e+00 0.1211
Xinshao 5.7578e-02 -8.5932e-03 1.1769e-01 1.9289e-01 0.8470
Xintian -7.4050e-03 -5.1493e-03 1.0877e-01 -6.8395e-03 0.9945
Xupu 3.2406e-01 -5.7468e-03 5.7735e-02 1.3726e+00 0.1699
Yanling -6.9021e-02 -5.9211e-04 9.9306e-03 -6.8667e-01 0.4923
Yizhang -2.6844e-01 -2.2463e-03 4.7588e-02 -1.2202e+00 0.2224
Yongshun 6.3064e-01 -1.1350e-02 1.8830e-01 1.4795e+00 0.1390
Yongxing 4.3411e-01 -9.0735e-03 1.5088e-01 1.1409e+00 0.2539
You 7.8750e-02 -7.2728e-03 1.2116e-01 2.4714e-01 0.8048
Yuanjiang 2.0004e-04 -1.7760e-04 2.9798e-03 6.9181e-03 0.9945
Yuanling 8.7298e-03 -2.2981e-06 2.3221e-05 1.8121e+00 0.0700
Yueyang 4.1189e-02 -1.9768e-04 2.3113e-03 8.6085e-01 0.3893
Zhijiang 1.0476e-01 -7.8123e-04 1.3100e-02 9.2214e-01 0.3565
Zhongfang -2.2685e-01 -2.1455e-03 3.5927e-02 -1.1855e+00 0.2358
Zhuzhou 3.2864e-01 -5.2432e-04 7.2391e-03 3.8688e+00 0.0001
Zixing -7.6849e-01 -8.8210e-02 9.4057e-01 -7.0144e-01 0.4830
4.3.1 Mapping the Local Moran’s I
- Before mapping the local Moran’s I map, it is wise to append the local Moran’s I dataframe (i.e. localMI) onto hunan SpatialPolygonDataFrame.
- The output SpatialPolygonDataFrame is called hunan.localMI
- The code chunks below can be used to perform the task.
<- cbind(hunan,localMI) %>%
hunan.localMI rename(Pr.Ii = Pr.z....E.Ii..)
hunan.localMI
Simple feature collection with 88 features and 11 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
First 10 features:
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC Ii
1 Changde 21098 Anxiang County Anxiang 23667 -0.001468468
2 Changde 21100 Hanshou County Hanshou 20981 0.025878173
3 Changde 21101 Jinshi County City Jinshi 34592 -0.011987646
4 Changde 21102 Li County Li 24473 0.001022468
5 Changde 21103 Linli County Linli 25554 0.014814881
6 Changde 21104 Shimen County Shimen 27137 -0.038793829
7 Changsha 21109 Liuyang County City Liuyang 63118 3.368821673
8 Changsha 21110 Ningxiang County Ningxiang 62202 1.560689600
9 Changsha 21111 Wangcheng County Wangcheng 70666 4.421958618
10 Chenzhou 21112 Anren County Anren 12761 -0.399322576
E.Ii Var.Ii Z.Ii Pr.Ii
1 -2.815006e-05 4.723841e-04 -0.06626904 0.9471636332
2 -6.061953e-04 1.016664e-02 0.26266425 0.7928093714
3 -5.366648e-03 1.133362e-01 -0.01966705 0.9843089778
4 -2.404783e-07 5.105969e-06 0.45259801 0.6508382339
5 -6.829362e-05 1.449949e-03 0.39085814 0.6959020959
6 -3.860263e-04 6.475559e-03 -0.47728835 0.6331568039
7 -7.750185e-02 1.518028e+00 2.79715225 0.0051555232
8 -7.387766e-02 8.001247e-01 1.82735933 0.0676457604
9 -1.106694e-01 1.359593e+00 3.88727819 0.0001013746
10 -7.011066e-03 7.034768e-02 -1.47912938 0.1391057404
geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
7 POLYGON ((113.9905 28.5682,...
8 POLYGON ((112.7181 28.38299...
9 POLYGON ((112.7914 28.52688...
10 POLYGON ((113.1757 26.82734...
4.3.2 Mapping local Moran’s I values
Plot the local Moran’s I values by using choropleth mapping functions of tmap package.
Show the code
tm_shape(hunan.localMI) +
tm_fill(col = "Ii",
style = "pretty",
palette = "RdBu",
title = "local moran statistics") +
tm_borders(alpha = 0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F)
4.3.3 Mapping Local Moran’s I p-values
For effective interpretation, it is better to plot both the local Moran’s I values map and its corresponding p-values map next to each other.
Show the code
tm_shape(hunan.localMI) +
tm_fill(col = "Pr.Ii",
breaks=c(-Inf, 0.001, 0.01, 0.05, 0.1, Inf),
palette="-Blues",
title = "local Moran's I p-values") +
tm_borders(alpha = 0.5)
Mapping both Local Moran’s I values and p-values
Plot both the local Moran’s I values map and its corresponding p-values map next to each other for easier comparison.
<- tm_shape(hunan.localMI) +
localMI.map tm_fill(col = "Ii", #<<
style = "pretty",
title = "local moran statistics") +
tm_borders(alpha = 0.5)+
tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 0.9,
legend.text.size = 0.8)
<- tm_shape(hunan.localMI) +
pvalue.map tm_fill(col = "Pr.Ii", #<<
breaks=c(-Inf, 0.001, 0.01, 0.05, 0.1, Inf),
palette="-Blues",
title = "local Moran's I p-values") +
tm_borders(alpha = 0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 0.9,
legend.text.size = 0.8)
tmap_arrange(localMI.map, pvalue.map, asp=1, ncol=2)
- You need to plot it together to draw any conclusions
- Then we need to decompose these relationshops using LISA Cluster
5 Creating a LISA Cluster Map
The LISA Cluster Map shows the significant locations color coded by type of spatial autocorrelation. The first step before we can generate the LISA cluster map is to plot the Moran scatterplot.
5.1 Plotting Moran scatterplot
The Moran scatterplot is an illustration of the relationship between the values of the chosen attribute at each location and the average value of the same attribute at neighboring locations.
The code chunk below plots the Moran scatterplot of GDPPC 2012 by using moran.plot()
of spdep.
par(bg = '#E4D5C9')
<- moran.plot(hunan$GDPPC, rswm_q,
nci labels=as.character(hunan$County),
xlab="GDPPC 2012",
ylab="Spatially Lag GDPPC 2012")
Interpretation
- Plot is split in 4 quadrants.
- LH (Neg- ac, Outlier), HH (Pos+ ac, Cluster)
- LL (Pos+ ac, Cluster), HL (Neg- ac, Outlier)
- Wz is neighbour (y axis), z is you/target (x axis)
- For this plot, you need to standardise it by scaling it and have both to cutoff at 0.
- The top right corner belongs to areas that have high GDPPC and are surrounded by other areas that have the average level of GDPPC.
- This are the high-high locations in the lesson slide: “I’m high and my neighbours are high.”
5.2 Plotting Moran scatterplot with standardised variable
- Use
scale()
to centers and scales the variable. - Here, centering is done by subtracting the mean (omitting NAs) the corresponding columns,
- and scaling is done by dividing the (centered) variable by their standard deviations.
- The
as.vector()
added to the end is to make sure that the data type we get out of this is a vector, that map neatly into out dataframe.
$Z.GDPPC <- scale(hunan$GDPPC) %>%
hunan as.vector
Plot the Moran scatterplot again by using the code chunk below.
par(bg = '#E4D5C9')
<- moran.plot(hunan$Z.GDPPC, rswm_q,
nci2 labels=as.character(hunan$County),
xlab="z-GDPPC 2012",
ylab="Spatially Lag z-GDPPC 2012")
Interpretation
- Plot is split in 4 quadrants.
- LH (Neg- ac, Outlier), HH (Pos+ ac, cluster)
- LL (Pos+ ac, Cluster), HL (Neg- ac, outlier)
- Wz is neighbour (y axis), z is you/target (x axis)
- After scaling it, we can see that both is now cutoff at 0.
5.3 Preparing LISA map classes
5.3.1 Convert to Vector
The code chunks below show the steps to prepare a LISA cluster map.
<- vector(mode="numeric",
quadrant length=nrow(localMI))
5.3.2 Derive spatially lagged GDPPC
Next, derive the spatially lagged variable of interest (i.e. GDPPC) and centers the spatially lagged variable around its mean.
$lag_GDPPC <- lag.listw(rswm_q,
hunan$GDPPC)
hunan
<- hunan$lag_GDPPC - mean(hunan$lag_GDPPC) DV
5.3.3 Center variable around mean
This is follow by centering the local Moran’s around the mean.
<- localMI[,1] - mean(localMI[,1]) LM_I
5.3.4 Set alpha value
Next, we will set a statistical significance level for the local Moran.
<- 0.05 signif
5.3.5 Define quadrants
These four command lines define the low-low (1), low-high (2), high-low (3) and high-high (4) categories.
<0 & LM_I>0] <- 1
quadrant[DV >0 & LM_I<0] <- 2
quadrant[DV <0 & LM_I<0] <- 3
quadrant[DV >0 & LM_I>0] <- 4 quadrant[DV
5.3.6 Place Moran
Lastly, place non-significant Moran in the category 0.
5]>signif] <- 0 quadrant[localMI[,
5.4 Plotting LISA map
5.4.1 LISA Map
Now, we can build the LISA map by using the code chunks below.
$quadrant <- quadrant
hunan.localMI<- c("#eeeae2", "#2c7bb6", "#abd9e9", "#fdae61", "#d7191c")
colors <- c("insignificant", "low-low", "low-high", "high-low", "high-high")
clusters
tm_shape(hunan.localMI) +
tm_fill(col = "quadrant",
style = "cat",
palette = colors[c(sort(unique(quadrant)))+1],
labels = clusters[c(sort(unique(quadrant)))+1],
popup.vars = c("")) +
tm_view(set.zoom.limits = c(11,17)) +
tm_borders(alpha=0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F)
Quadrants
- High-High (Cluster): counties that have High GDPPC surrounded by counties with High GDPPC
- High-Low (Outlier): counties that have High GDPPC surrounded by counties with Low GDPPC
- Low-High (Outlier): counties that have low GDPPC surrounded by counties with High GDPPC
- Low-Low (Cluster): counties that have low GDPPC surrounded by counties with low GDPPC
5.4.2 Local Moran’s I and p-values
Plot both the local Moran’s I values map and its corresponding p-values map next to each other for easier comparison.
The code chunk below will be used to create such visualisation.
<- qtm(hunan, "GDPPC") +
gdppc tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
$quadrant <- quadrant
hunan.localMI<- c("#eeeae2", "#2c7bb6", "#abd9e9", "#fdae61", "#d7191c")
colors <- c("insignificant", "low-low", "low-high", "high-low", "high-high")
clusters
<- tm_shape(hunan.localMI) +
LISAmap tm_fill(col = "quadrant",
style = "cat",
palette = colors[c(sort(unique(quadrant)))+1],
labels = clusters[c(sort(unique(quadrant)))+1],
popup.vars = c("")) +
tm_view(set.zoom.limits = c(11,17)) +
tm_borders(alpha=0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
tmap_arrange(gdppc, LISAmap,
asp=1, ncol=2)
Question: What statistical observations can you draw from the LISA map above?
- We should look at the original value to make sense of the previous map.
- Focusing on the Low-High, the original map does not show any high values.
- HighHigh cluster is definitely correct.
- But the low-low cluster should be a Low-high outlier.
We can also include the local Moran’s I map and p-value map as shown below for easy comparison.
tmap_arrange(localMI.map, pvalue.map,
asp=1, ncol=2)
6 Hot Spot and Cold Spot Area Analysis
Besides detecting cluster and outliers, localised spatial statistics can be also used to detect hot spot and/or cold spot areas.
The term ‘hot spot’ has been used generically across disciplines to describe a region or value that is higher relative to its surroundings (Lepers et al 2005, Aben et al 2012, Isobe et al 2015).
6.1 Getis and Ord’s G-Statistics
NOTE: If you have negative values, you cannot use Getis and Ord’s G Stats. It must be all positive. Must calculated the distance based matrix and not contiguity matrix.
Used to to detect spatial anomalies is the Getis and Ord’s G-statistics .
Looks at neighbours within a defined proximity to identify where either high or low values clutser spatially.
Here, statistically significant hot-spots are recognised as areas of high values where other areas within a neighbourhood range also share high values too.
The analysis consists of three steps:
- Deriving spatial weight matrix
- Computing Gi statistics
- Mapping Gi statistics
6.1.1 Deriving distance-based weight matrix
First, we need to define a new set of neighbours. While the spatial autocorrelation considered units which shared borders, for Getis-Ord we are defining neighbours based on distance.
There are two type of distance-based proximity matrix, they are:
- fixed distance weight matrix; and
- adaptive distance weight matrix.
6.1.1.1 Deriving the centroid
We will need points to associate with each polygon before we can make our connectivity graph.
It will be a little more complicated than just running
st_centroid()
on the sf object: us.bound. We need the coordinates in a separate data frame for this to work.Use mapping function: applies a given function to each element of a vector and returns a vector of the same length. The input vector is geometry column of us.bound. The function will be
st_centroid()
. We will be using map_dbl variation of map from the purrr package.To get longitude values we map the
st_centroid()
function over the geometry column of us.bound and access the longitude value through double bracket notation [[]] and 1. This allows us to get only the longitude, which is the first value in each centroid.
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]]) longitude
Do the same for latitude with one key difference: We will access the second value per each centroid with [[2]].
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]]) latitude
Use cbind()
to put longitude and latitude into the same object.
<- cbind(longitude, latitude) coords
6.1.1.2 Determine the cut-off distance
Firstly, we need to determine the upper limit for distance band by using the steps below:
- Return a matrix with the indices of points belonging to the set of the k nearest neighbours of each other by using
knearneigh()
of spdep. - Convert the knn object returned by
knearneigh()
into a neighbours list of class nb with a list of integer vectors containing neighbour region number ids by usingknn2nb()
. - Return the length of neighbour relationship edges by using
nbdists()
of spdep. The function returns in the units of the coordinates if the coordinates are projected, in km otherwise. - Remove the list structure of the returned object by using
unlist()
.
#coords <- coordinates(hunan)
<- knn2nb(knearneigh(coords))
k1 <- unlist(nbdists(k1, coords, longlat = TRUE))
k1dists summary(k1dists)
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.79 32.57 38.01 39.07 44.52 61.79
Results above show that: - The largest first nearest neighbour distance is 61.79 km, so using this as the upper threshold gives certainty that all units will have at least one neighbour. - We will round up to 62 to ensure that all counties will have at least 1 nearest neighbour.
6.1.1.3 Computing fixed distance weight matrix
Compute the distance weight matrix by using dnearneigh()
as shown in the code chunk below.
<- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62 wm_d62
Neighbour list object:
Number of regions: 88
Number of nonzero links: 324
Percentage nonzero weights: 4.183884
Average number of links: 3.681818
Next, nb2listw()
is used to convert the nb object into spatial weights object. The input of nb2listw()
must be an object of class nb. The syntax of the function has two major arguments, namely style
and zero.poly
.
- style can take values “W”, “B”, “C”, “U”, “minmax” and “S”.
- B is the basic binary coding
- W is row standardised (sums over all links to n),
- C is globally standardised (sums over all links to n),
- U is equal to C divided by the number of neighbours (sums over all links to unity)
- S is the variance-stabilizing coding scheme proposed by Tiefelsdorf et al. 1999, p. 167-168 (sums over all links to n).
The output spatial weights object is called wm62_lw
.
<- nb2listw(wm_d62, style = 'B')
wm62_lw summary(wm62_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 324
Percentage nonzero weights: 4.183884
Average number of links: 3.681818
Link number distribution:
1 2 3 4 5 6
6 15 14 26 20 7
6 least connected regions:
6 15 30 32 56 65 with 1 link
7 most connected regions:
21 28 35 45 50 52 82 with 6 links
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 324 648 5440
6.1.1.4 Computing adaptive distance weight matrix
One of the characteristics of fixed distance weight matrix is that more densely settled areas (usually the urban areas) tend to have more neighbours and the less densely settled areas (usually the rural counties) tend to have lesser neighbours. Having many neighbours smoothes the neighbour relationship across more neighbours.
It is possible to control the numbers of neighbours directly using k-nearest neighbours, either accepting asymmetric neighbours or imposing symmetry as shown in the code chunk below.
In the example below, we fix the number of neighbours to 8.
<- knn2nb(knearneigh(coords,
knn k=8)) #<<
knn
Neighbour list object:
Number of regions: 88
Number of nonzero links: 704
Percentage nonzero weights: 9.090909
Average number of links: 8
Non-symmetric neighbours list
Next, nb2listw()
is used to convert the nb object into spatial weights object.
<- nb2listw(knn, style = 'B')
knn_lw summary(knn_lw)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 704
Percentage nonzero weights: 9.090909
Average number of links: 8
Non-symmetric neighbours list
Link number distribution:
8
88
88 least connected regions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 with 8 links
88 most connected regions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 with 8 links
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 704 1300 23014
6.1.2 Computing Gi statistics
6.1.2.1 Gi statistics using fixed distance
<- order(hunan$County)
fips <- localG(hunan$GDPPC, wm62_lw)
gi.fixed gi.fixed
[1] 0.436075843 -0.265505650 -0.073033665 0.413017033 0.273070579
[6] -0.377510776 2.863898821 2.794350420 5.216125401 0.228236603
[11] 0.951035346 -0.536334231 0.176761556 1.195564020 -0.033020610
[16] 1.378081093 -0.585756761 -0.419680565 0.258805141 0.012056111
[21] -0.145716531 -0.027158687 -0.318615290 -0.748946051 -0.961700582
[26] -0.796851342 -1.033949773 -0.460979158 -0.885240161 -0.266671512
[31] -0.886168613 -0.855476971 -0.922143185 -1.162328599 0.735582222
[36] -0.003358489 -0.967459309 -1.259299080 -1.452256513 -1.540671121
[41] -1.395011407 -1.681505286 -1.314110709 -0.767944457 -0.192889342
[46] 2.720804542 1.809191360 -1.218469473 -0.511984469 -0.834546363
[51] -0.908179070 -1.541081516 -1.192199867 -1.075080164 -1.631075961
[56] -0.743472246 0.418842387 0.832943753 -0.710289083 -0.449718820
[61] -0.493238743 -1.083386776 0.042979051 0.008596093 0.136337469
[66] 2.203411744 2.690329952 4.453703219 -0.340842743 -0.129318589
[71] 0.737806634 -1.246912658 0.666667559 1.088613505 -0.985792573
[76] 1.233609606 -0.487196415 1.626174042 -1.060416797 0.425361422
[81] -0.837897118 -0.314565243 0.371456331 4.424392623 -0.109566928
[86] 1.364597995 -1.029658605 -0.718000620
attr(,"internals")
Gi E(Gi) V(Gi) Z(Gi) Pr(z != E(Gi))
[1,] 0.064192949 0.05747126 2.375922e-04 0.436075843 6.627817e-01
[2,] 0.042300020 0.04597701 1.917951e-04 -0.265505650 7.906200e-01
[3,] 0.044961480 0.04597701 1.933486e-04 -0.073033665 9.417793e-01
[4,] 0.039475779 0.03448276 1.461473e-04 0.413017033 6.795941e-01
[5,] 0.049767939 0.04597701 1.927263e-04 0.273070579 7.847990e-01
[6,] 0.008825335 0.01149425 4.998177e-05 -0.377510776 7.057941e-01
[7,] 0.050807266 0.02298851 9.435398e-05 2.863898821 4.184617e-03
[8,] 0.083966739 0.04597701 1.848292e-04 2.794350420 5.200409e-03
[9,] 0.115751554 0.04597701 1.789361e-04 5.216125401 1.827045e-07
[10,] 0.049115587 0.04597701 1.891013e-04 0.228236603 8.194623e-01
[11,] 0.045819180 0.03448276 1.420884e-04 0.951035346 3.415864e-01
[12,] 0.049183846 0.05747126 2.387633e-04 -0.536334231 5.917276e-01
[13,] 0.048429181 0.04597701 1.924532e-04 0.176761556 8.596957e-01
[14,] 0.034733752 0.02298851 9.651140e-05 1.195564020 2.318667e-01
[15,] 0.011262043 0.01149425 4.945294e-05 -0.033020610 9.736582e-01
[16,] 0.065131196 0.04597701 1.931870e-04 1.378081093 1.681783e-01
[17,] 0.027587075 0.03448276 1.385862e-04 -0.585756761 5.580390e-01
[18,] 0.029409313 0.03448276 1.461397e-04 -0.419680565 6.747188e-01
[19,] 0.061466754 0.05747126 2.383385e-04 0.258805141 7.957856e-01
[20,] 0.057656917 0.05747126 2.371303e-04 0.012056111 9.903808e-01
[21,] 0.066518379 0.06896552 2.820326e-04 -0.145716531 8.841452e-01
[22,] 0.045599896 0.04597701 1.928108e-04 -0.027158687 9.783332e-01
[23,] 0.030646753 0.03448276 1.449523e-04 -0.318615290 7.500183e-01
[24,] 0.035635552 0.04597701 1.906613e-04 -0.748946051 4.538897e-01
[25,] 0.032606647 0.04597701 1.932888e-04 -0.961700582 3.362000e-01
[26,] 0.035001352 0.04597701 1.897172e-04 -0.796851342 4.255374e-01
[27,] 0.012746354 0.02298851 9.812587e-05 -1.033949773 3.011596e-01
[28,] 0.061287917 0.06896552 2.773884e-04 -0.460979158 6.448136e-01
[29,] 0.014277403 0.02298851 9.683314e-05 -0.885240161 3.760271e-01
[30,] 0.009622875 0.01149425 4.924586e-05 -0.266671512 7.897221e-01
[31,] 0.014258398 0.02298851 9.705244e-05 -0.886168613 3.755267e-01
[32,] 0.005453443 0.01149425 4.986245e-05 -0.855476971 3.922871e-01
[33,] 0.043283712 0.05747126 2.367109e-04 -0.922143185 3.564539e-01
[34,] 0.020763514 0.03448276 1.393165e-04 -1.162328599 2.451020e-01
[35,] 0.081261843 0.06896552 2.794398e-04 0.735582222 4.619850e-01
[36,] 0.057419907 0.05747126 2.338437e-04 -0.003358489 9.973203e-01
[37,] 0.013497133 0.02298851 9.624821e-05 -0.967459309 3.333145e-01
[38,] 0.019289310 0.03448276 1.455643e-04 -1.259299080 2.079223e-01
[39,] 0.025996272 0.04597701 1.892938e-04 -1.452256513 1.464303e-01
[40,] 0.016092694 0.03448276 1.424776e-04 -1.540671121 1.233968e-01
[41,] 0.035952614 0.05747126 2.379439e-04 -1.395011407 1.630124e-01
[42,] 0.031690963 0.05747126 2.350604e-04 -1.681505286 9.266481e-02
[43,] 0.018750079 0.03448276 1.433314e-04 -1.314110709 1.888090e-01
[44,] 0.015449080 0.02298851 9.638666e-05 -0.767944457 4.425202e-01
[45,] 0.065760689 0.06896552 2.760533e-04 -0.192889342 8.470456e-01
[46,] 0.098966900 0.05747126 2.326002e-04 2.720804542 6.512325e-03
[47,] 0.085415780 0.05747126 2.385746e-04 1.809191360 7.042128e-02
[48,] 0.038816536 0.05747126 2.343951e-04 -1.218469473 2.230456e-01
[49,] 0.038931873 0.04597701 1.893501e-04 -0.511984469 6.086619e-01
[50,] 0.055098610 0.06896552 2.760948e-04 -0.834546363 4.039732e-01
[51,] 0.033405005 0.04597701 1.916312e-04 -0.908179070 3.637836e-01
[52,] 0.043040784 0.06896552 2.829941e-04 -1.541081516 1.232969e-01
[53,] 0.011297699 0.02298851 9.615920e-05 -1.192199867 2.331829e-01
[54,] 0.040968457 0.05747126 2.356318e-04 -1.075080164 2.823388e-01
[55,] 0.023629663 0.04597701 1.877170e-04 -1.631075961 1.028743e-01
[56,] 0.006281129 0.01149425 4.916619e-05 -0.743472246 4.571958e-01
[57,] 0.063918654 0.05747126 2.369553e-04 0.418842387 6.753313e-01
[58,] 0.070325003 0.05747126 2.381374e-04 0.832943753 4.048765e-01
[59,] 0.025947288 0.03448276 1.444058e-04 -0.710289083 4.775249e-01
[60,] 0.039752578 0.04597701 1.915656e-04 -0.449718820 6.529132e-01
[61,] 0.049934283 0.05747126 2.334965e-04 -0.493238743 6.218439e-01
[62,] 0.030964195 0.04597701 1.920248e-04 -1.083386776 2.786368e-01
[63,] 0.058129184 0.05747126 2.343319e-04 0.042979051 9.657182e-01
[64,] 0.046096514 0.04597701 1.932637e-04 0.008596093 9.931414e-01
[65,] 0.012459080 0.01149425 5.008051e-05 0.136337469 8.915545e-01
[66,] 0.091447733 0.05747126 2.377744e-04 2.203411744 2.756574e-02
[67,] 0.049575872 0.02298851 9.766513e-05 2.690329952 7.138140e-03
[68,] 0.107907212 0.04597701 1.933581e-04 4.453703219 8.440175e-06
[69,] 0.019616151 0.02298851 9.789454e-05 -0.340842743 7.332220e-01
[70,] 0.032923393 0.03448276 1.454032e-04 -0.129318589 8.971056e-01
[71,] 0.030317663 0.02298851 9.867859e-05 0.737806634 4.606320e-01
[72,] 0.019437582 0.03448276 1.455870e-04 -1.246912658 2.124295e-01
[73,] 0.055245460 0.04597701 1.932838e-04 0.666667559 5.049845e-01
[74,] 0.074278054 0.05747126 2.383538e-04 1.088613505 2.763244e-01
[75,] 0.013269580 0.02298851 9.719982e-05 -0.985792573 3.242349e-01
[76,] 0.049407829 0.03448276 1.463785e-04 1.233609606 2.173484e-01
[77,] 0.028605749 0.03448276 1.455139e-04 -0.487196415 6.261191e-01
[78,] 0.039087662 0.02298851 9.801040e-05 1.626174042 1.039126e-01
[79,] 0.031447120 0.04597701 1.877464e-04 -1.060416797 2.889550e-01
[80,] 0.064005294 0.05747126 2.359641e-04 0.425361422 6.705732e-01
[81,] 0.044606529 0.05747126 2.357330e-04 -0.837897118 4.020885e-01
[82,] 0.063700493 0.06896552 2.801427e-04 -0.314565243 7.530918e-01
[83,] 0.051142205 0.04597701 1.933560e-04 0.371456331 7.102977e-01
[84,] 0.102121112 0.04597701 1.610278e-04 4.424392623 9.671399e-06
[85,] 0.021901462 0.02298851 9.843172e-05 -0.109566928 9.127528e-01
[86,] 0.064931813 0.04597701 1.929430e-04 1.364597995 1.723794e-01
[87,] 0.031747344 0.04597701 1.909867e-04 -1.029658605 3.031703e-01
[88,] 0.015893319 0.02298851 9.765131e-05 -0.718000620 4.727569e-01
attr(,"cluster")
[1] Low Low High High High High High High High Low Low High Low Low Low
[16] High High High High Low High High Low Low High Low Low Low Low Low
[31] Low Low Low High Low Low Low Low Low Low High Low Low Low Low
[46] High High Low Low Low Low High Low Low Low Low Low High Low Low
[61] Low Low Low High High High Low High Low Low High Low High High Low
[76] High Low Low Low Low Low Low High High Low High Low Low
Levels: Low High
attr(,"gstari")
[1] FALSE
attr(,"call")
localG(x = hunan$GDPPC, listw = wm62_lw)
attr(,"class")
[1] "localG"
Results above show that:
The output of
localG()
is a vector of G or Gstar values, with attributes “gstari” set to TRUE or FALSE, “call” set to the function call, and class “localG”.The Gi statistics is represented as a Z-score. Greater values represent a greater intensity of clustering and the direction (positive or negative) indicates high or low clusters.
Join the Gi values to their corresponding hunan sf data frame by using the code chunk below.
The 3 sub tasks are:
- Convert the output vector (i.e. gi.fixed) into r matrix object by using
as.matrix().c
cbind()
is used to join hunan data and gi.fixed matrix to produce a new SpatialPolygonDataFrame called hunan.gi. Field name of the gi values is renamed to gstat_fixed by usingnames()
.
- Convert the output vector (i.e. gi.fixed) into r matrix object by using
<- cbind(hunan, as.matrix(gi.fixed)) %>%
hunan.gi rename(gstat_fixed = as.matrix.gi.fixed.)
hunan.gi
Simple feature collection with 88 features and 9 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
First 10 features:
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC Z.GDPPC lag_GDPPC
1 Changde 21098 Anxiang County Anxiang 23667 -0.049205949 24847.20
2 Changde 21100 Hanshou County Hanshou 20981 -0.228341158 22724.80
3 Changde 21101 Jinshi County City Jinshi 34592 0.679406172 24143.25
4 Changde 21102 Li County Li 24473 0.004547952 27737.50
5 Changde 21103 Linli County Linli 25554 0.076642204 27270.25
6 Changde 21104 Shimen County Shimen 27137 0.182215933 21248.80
7 Changsha 21109 Liuyang County City Liuyang 63118 2.581867439 43747.00
8 Changsha 21110 Ningxiang County Ningxiang 62202 2.520777398 33582.71
9 Changsha 21111 Wangcheng County Wangcheng 70666 3.085260051 45651.17
10 Chenzhou 21112 Anren County Anren 12761 -0.776550918 32027.62
gstat_fixed geometry
1 0.43607584 POLYGON ((112.0625 29.75523...
2 -0.26550565 POLYGON ((112.2288 29.11684...
3 -0.07303367 POLYGON ((111.8927 29.6013,...
4 0.41301703 POLYGON ((111.3731 29.94649...
5 0.27307058 POLYGON ((111.6324 29.76288...
6 -0.37751078 POLYGON ((110.8825 30.11675...
7 2.86389882 POLYGON ((113.9905 28.5682,...
8 2.79435042 POLYGON ((112.7181 28.38299...
9 5.21612540 POLYGON ((112.7914 28.52688...
10 0.22823660 POLYGON ((113.1757 26.82734...
6.1.2.2 Mapping Gi values with fixed distance weights
The code chunk below shows the functions used to map the Gi values derived using fixed distance weight matrix.
<- qtm(hunan, "GDPPC") +
gdppc tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
<-tm_shape(hunan.gi) +
Gimap tm_fill(col = "gstat_fixed",
style = "pretty",
palette="-RdBu",
title = "local Gi") +
tm_borders(alpha = 0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
tmap_arrange(gdppc, Gimap, asp=1, ncol=2)
Question: What statistical observation can you draw from the Gi map above?
- In the left side, western region is the cold spot area while the hot spot area is in the east side.
- If you plot the transportation line, you can see that it is mainly on the east side. So this might be one of the underlying reason why the hot spot areas are on the right side.
6.1.2.3 Gi statistics using adaptive distance
The code chunk below are used to compute the Gi values for GDPPC2012 by using an adaptive distance weight matrix (i.e knb_lw).
<- order(hunan$County)
fips <- localG(hunan$GDPPC, knn_lw)
gi.adaptive <- cbind(hunan, as.matrix(gi.adaptive)) %>%
hunan.gi rename(gstat_adaptive = as.matrix.gi.adaptive.)
6.1.2.4 Mapping Gi values with adaptive distance weights
We can also visualise the locations of hot spot and cold spot areas.
The code chunk below shows the functions used to map the Gi values derived using fixed distance weight matrix.
<- qtm(hunan, "GDPPC")+
gdppctm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
<- tm_shape(hunan.gi) +
Gimap2 tm_fill(col = "gstat_adaptive",
style = "pretty",
palette="-RdBu",
title = "local Gi") +
tm_borders(alpha = 0.5) +
tm_layout(bg.color = "#E4D5C9",
frame = F,
legend.title.size = 1.2,
legend.text.size = 1)
tmap_arrange(gdppc,
Gimap2, asp=1,
ncol=2)
Question: What statistical observation can you draw from the Gi map above?
- This plot with the adaptive weights is actually smoother than the previous map with fixed weights
- The range in the legend has also changed
6 Reference
Kam, T. S. Lobal Measures of Spatial Autocorrelation. R for Geospatial Data Science and Analytics. https://r4gdsa.netlify.app/chap10.html